%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% TPs Année 2001-2002 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \documentclass[12pt]{article} \usepackage[french]{babel} \voffset -2.8 cm \textwidth 17 cm \textheight 24.7 cm \oddsidemargin -.54 cm \evensidemargin -1.54 cm \usepackage{graphicx} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage[latin1]{inputenc} \pagestyle{plain} \begin{document} \centerline {\Large \sc Information and coding theory} \bigskip \bigskip \hrule \bigskip \bigskip \centerline {\underline{\Large Exercise sheet n$^\circ$ 5}:} \bigskip \bigskip \noindent {\bf 5-1.} {\em Channel with additive noise.} We consider a memoryless channel with additive noise, with input $X$ and output $Y = X+Z$, where $Z$ is a random variable with $P(Z=0)=P(Z=a)=1/2$. We assume that the alphabet of the input is ${\cal X}=\{0,1\}$ and that the variable $Z$ is independent of $X$. Calculate the capacity of this channel as a function of the parameter $a$ (which is a whole number and $\ge 0$.). \par \bigskip \noindent {\bf 5-2.} We consider a memoryless channel with input $X$, which takes values $0,1,2$ and $3$, and output $Y=X+Z {\rm ~(mod~4)}$, where $Z$ is a random variable which takes values $-1,0$ and $1$ with probabilities $1/4, 1/2$ and $1/4$, respectively. In addition, $X$ and $Z$ are independent. \par \medskip \noindent (a) What is the probability distribution $p^*(x)$ that maximizes the mutual information? \par \medskip \noindent (b) Calculate the capacity of this channel. \par \medskip \noindent (c) Calculate the capacity of a channel system that consists of two concatenations of the channel. \par \medskip \noindent (d) Calculate the capacity of a channel system that consists of two times the channel in parallel. Compare the result with the results of (b) and (c). \par \bigskip \noindent {\bf 5-3.} We are given a noisy channel with a binary alphabet for the input and output, with transition matrix $$ p(y|x)=\left( \begin{tabular}{c c} 1 & 0 \\ 1/2 & 1/2 \end{tabular} \right) \qquad\qquad x,y \in \{0,1\}. $$ \par \medskip \noindent (a) Calculate the capacity and the probability distribution $p^*(x)$ that attains this maximum. \par \medskip \noindent (b) Find the symmetric binary channel that gives the same capacity as the previous channel. \par \medskip \noindent (c) Calculate the capacity of a channel with transition matrix \begin{equation} p(y|x) = \begin{pmatrix} 1 & 0\\ 1-q & q \end{pmatrix}, \qquad x,y \in \{0,1\}, q \in [0,1] \end{equation} \par \bigskip \noindent {\bf 5-4.} {\em Suboptimal codes.} We consider again the channel of exercises 5-3. We chose a sequence of random error correction codes $(2^{nR},n)$, for which each codeword is a sequence of $n$ equiprobable random bits. \par \medskip \noindent (a) This sequence does not attain the capacity (which was calculated previously). Why? \par \medskip \noindent (b) Determine the maximal transmission rate $R$ for which the average error probability $P_e^{(n)}$ of the random codes tends to zero for a block length $n$ tending to infinity. \par \bigskip \newpage \noindent {\bf 5-5.} {\em Pre-treatment of the output.} We consider a channel characterized by the transmition matrix $p(y|x)$ and a given capacity $C$. We decide to increase this capacity by introducing a ``pre-treatment'' of the output, ${\tilde Y}=f(Y)$. The resulting channel is thus $X\to Y \to {\tilde Y}$. \par \medskip \noindent (a) Show that ${\tilde C} >C$ is impossible and that thus, this method does not work. \par \medskip \noindent (b) In which case does this pre-treatment not decrease the capacity of the channel? \par \bigskip \centerline {\underline{\Large Web site}:} \bigskip http://quic.ulb.ac.be/teaching/ %\noindent {\bf 5-6.} {\em Capacit\'e \`a erreur nulle.} %Soit un canal dont l'alphabet d'entr\'ee et de sortie %est $\{0,1,2,3,4\}$, et qui est caract\'eris\'e par la probabilit\'e %de transition %$$ %p(y|x)= \left\{ \begin{tabular}{ll} %1/2 & si $y=x \pm 1$ ~mod~5 \\ %0 & sinon %\end{tabular} \right. %$$ %\par %\medskip %\noindent (a) Calculer la capacit\'e de ce canal. %\par %\medskip %\noindent (b) On appelle ``capacit\'e \`a erreur nulle'' le nombre %de bits qui peuvent \^etre transmis par usage du canal avec une %erreur {\em strictement} \'egale \`a 0. Il est clair que, pour le canal %pentagonal d\'ecrit ci-dessus, cette capacit\'e est au moins \'egale %\`a 1 bit (il suffit par exemple d'envoyer les symboles 1 ou 2 avec %une probabilit\'e 1/2 chacun). Montrer que la capacit\'e \`a erreur nulle %de ce canal est en fait sup\'erieure \`a 1 bit. Dans ce but, trouver %un code utilisant des blocs de longueur 2 plus performant que le code %trivial ci-dessus. \end{document}