INFORMATION AND CODING THEORY

Solution of exercise sheet n° 6

6-1.

(a) The size of the matrix is given by n = 6 and m = 4. n corresponds to the size of the
codewords. The rank of H is equal to m = 4 and corresponds to the number of parity bits.
We define a codeword vector x of components z;, ¢ = 1,2, ...,n. The condition Hx = 0 can be
written in terms of the system of equations :

x1+x5+x6:0
J}1+SL’2+$6:0
ZL’Q—|—JI3+ZL’6:0
T1+x4+26=0

We find the following solutions :
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The minimal distance between the codewords is 3 thus one can only correct single errors.

(b) To correct 1 error and to detect two errors, the minimal Hamming distance has to be
d = 4. This corresponds to having the 3 linearly independent columns of H (see exercise 6-3).
In particular, the last column of H can neither be equal to another column of H nor equal to
a linear combination of any two columns. There are 5 columns given and the number of linear
combinations of two of them is @ = 10. Remember that the column with all zeros is also
forbidden, so this gives us 5410+ 1 = 16 different forbidden columns. Because the h; ¢ are bits,
only 2* = 16 different combinations are possible, and they are all excluded by the argument

above. Therefore the Hamming distance d can not be 4.

6-2.

(a) The first 3 columns of G are linearly independent and correspond to k = 3 bits of
information, while the last two columns correspond to m = 2 parity bits. There are thus 2¥ = 8
codewords. The Hamming matrix has 2 rows (number of parity bits) and 5 columns (lengths
of the codewords) and contains at least two linearly independent columns. H can be found by
solving the equation Hw = 0 for a codeword w. We can try a solution of the form :

hip hig hiz 1 0
hop haa has 0 1

We find :
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Since all codewords have at least two bits the minimal distance between the words is d = 2.
This code allows the detection of single errors without correcting them.

(b)

In this case G5, n = 4 and k = 1. The number of codewords is 2¥ = 2. m = n —k = 3, which

corresponds to 3 parity bits. Therefore 3 columns of H can be written as the identity matrix.
We find :

—_ = =

1
0
0

o = O
_ o O

The code has only two codewords :

O O OO
— = =

The Hamming distance is d = 4. This is a repetition code which corrects single errors and
detects double errors.

Remark : The transmission rate is given by R = k/n. We observe that Rg, = 3/5, but it
does not permit to correct any error (can only detect single errors). In contrary Rg, = 1/4
but permits to correct single errors and detect double errors. There is a tradoff between the
transmission rate and the possibility to correct errors.

6-3.

A Hamming code corrects up to e — 1 errors and detects (but not necessarily correct) up to e
errors iff the minimal Hamming distance is d = 2e. It remains to show that d = 2e is equivalent
to the requirement that all sets of 2e—1 columns of the parity matrix H are linearly independent.

If w; is a codeword one has Hw; = 0. Let w; = wy, + z, thus the number of 1s in z (the
weight W(z)) is equal to the distance d;; between w; and wy. One has Hw; = Hw;, + Hz =0
and Hw;, = 0 since it is a codeword. One obtains Hz = 0. This only holds if there are djy,
columns of H that are linearly dependent.

But the minimal Hamming distance is d = min;;{d;;}, that means : d is the smallest
number of linearly dependent columns in H. This again means that one requires all sets of
d — 1 columns of H to be linearly independent. Thus, d = 2e is equivalent to require that all
sets of 2¢ — 1 columns of H are linearly independent.

6-4.

Let w; be a codeword and W (w;) its weight. The weight can be written as W (w;) = d(w;, 0).
We are going to use the distance property : d(w;, w;) = d(w; — wy, w; — wy). By replacing
k by j one obtains d(w;, w;) = d(w; — w;,0), w; — w; which is also a codeword because all
codewords form a group.

Proof.

The definition of the minimal Hamming distance d = min; ;{d(w;, w;)} implies in particular
w; = 0 (0 is always a codeword) Vi : d(w;,0) = W (w;) > d. But it also implies that there is at
least one couple (I, m) such that d(w;, w,,) = d (since there are at least two codewords which
attain the minimum), which offers the possibility to write d(w; — w,,,0) = d. There is thus a



k wy = w; — w,, satisfies W (wy) = d.

Inversely, if on assumes that W(w) > d then Vi,j 3k : wy, = w; — w; such that d(w;, w;) =
d(w; —w;,0) = W(wy) > d. As there is a z such that W(w,) = d, one also has a pair (a,b)
such that d(w,, w;) = d(w, — w;,0) = W(w,) = d. On obtains thus d = min; ;{d(w;, w;)}.



