
Information and coding theory

Solution of exercise sheet n◦ 6 :

6-1.

(a) The size of the matrix is given by n = 6 and m = 4. n corresponds to the size of the
codewords. The rank of H is equal to m = 4 and corresponds to the number of parity bits.
We define a codeword vector x of components xi, i = 1, 2, ..., n. The condition Hx = 0 can be
written in terms of the system of equations :

x1 + x5 + x6 = 0
x1 + x2 + x6 = 0
x2 + x3 + x6 = 0
x1 + x4 + x6 = 0

We find the following solutions :

x =



1
0
1
0
0
1


,



1
1
1
1
1
0


,



0
1
0
1
1
1


,



0
0
0
0
0
0


The minimal distance between the codewords is 3 thus one can only correct single errors.

(b) To correct 1 error and to detect two errors, the minimal Hamming distance has to be
d = 4. This corresponds to having the 3 linearly independent columns of H (see exercise 6-3).
In particular, the last column of H can neither be equal to another column of H nor equal to
a linear combination of any two columns. There are 5 columns given and the number of linear
combinations of two of them is 5·(5−1)

2
= 10. Remember that the column with all zeros is also

forbidden, so this gives us 5+10+1 = 16 different forbidden columns. Because the hi,6 are bits,
only 24 = 16 different combinations are possible, and they are all excluded by the argument
above. Therefore the Hamming distance d can not be 4.

6-2.

(a) The first 3 columns of G1 are linearly independent and correspond to k = 3 bits of
information, while the last two columns correspond to m = 2 parity bits. There are thus 2k = 8
codewords. The Hamming matrix has 2 rows (number of parity bits) and 5 columns (lengths
of the codewords) and contains at least two linearly independent columns. H can be found by
solving the equation Hw = 0 for a codeword w. We can try a solution of the form :(

h1,1 h1,2 h1,3 1 0
h2,1 h2,2 h2,3 0 1

)

We find : (
1 1 1 1 0
0 1 1 0 1

)
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Since all codewords have at least two bits the minimal distance between the words is d = 2.
This code allows the detection of single errors without correcting them.

(b)
In this case G2, n = 4 and k = 1. The number of codewords is 2k = 2. m = n−k = 3, which

corresponds to 3 parity bits. Therefore 3 columns of H can be written as the identity matrix.
We find :  1 1 0 0

1 0 1 0
1 0 0 1


The code has only two codewords :

x =


0
0
0
0

 ,


1
1
1
1


The Hamming distance is d = 4. This is a repetition code which corrects single errors and
detects double errors.

Remark : The transmission rate is given by R = k/n. We observe that RG1 = 3/5, but it
does not permit to correct any error (can only detect single errors). In contrary RG2 = 1/4
but permits to correct single errors and detect double errors. There is a tradoff between the
transmission rate and the possibility to correct errors.
6-3.

A Hamming code corrects up to e−1 errors and detects (but not necessarily correct) up to e
errors iff the minimal Hamming distance is d = 2e. It remains to show that d = 2e is equivalent
to the requirement that all sets of 2e−1 columns of the parity matrix H are linearly independent.

If wi is a codeword one has Hwi = 0. Let wj = wk + z, thus the number of 1s in z (the
weight W (z)) is equal to the distance djk between wj and wk. One has Hwj = Hwk +Hz = 0
and Hwk = 0 since it is a codeword. One obtains Hz = 0. This only holds if there are djk
columns of H that are linearly dependent.

But the minimal Hamming distance is d = minij{dij}, that means : d is the smallest
number of linearly dependent columns in H. This again means that one requires all sets of
d − 1 columns of H to be linearly independent. Thus, d = 2e is equivalent to require that all
sets of 2e− 1 columns of H are linearly independent.

6-4.

Let wi be a codeword and W (wi) its weight. The weight can be written as W (wi) = d(wi,0).
We are going to use the distance property : d(wi,wj) = d(wi − wk,wj − wk). By replacing
k by j one obtains d(wi,wj) = d(wi − wj,0), wi − wj which is also a codeword because all
codewords form a group.

Proof.
The definition of the minimal Hamming distance d = mini,j{d(wi,wj)} implies in particular
wj = 0 (0 is always a codeword) ∀i : d(wi,0) = W (wi) ≥ d. But it also implies that there is at
least one couple (l,m) such that d(wl,wm) = d (since there are at least two codewords which
attain the minimum), which offers the possibility to write d(wl −wm,0) = d. There is thus a
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k wk = wl −wm satisfies W (wk) = d.

Inversely, if on assumes that W (w) ≥ d then ∀i, j ∃k : wk = wi − wj such that d(wi,wj) =
d(wi − wj,0) = W (wk) ≥ d. As there is a z such that W (wz) = d, one also has a pair (a, b)
such that d(wa,wb) = d(wa −wb,0) = W (wz) = d. On obtains thus d = mini,j{d(wi,wj)}.
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