Information and coding theory

Solution of exercise sheet $\mathrm{n}^{\circ} 6$:

6-1.

(a) The size of the matrix is given by $n=6$ and $m=4 . n$ corresponds to the size of the codewords. The rank of H is equal to $m=4$ and corresponds to the number of parity bits. We define a codeword vector \mathbf{x} of components $x_{i}, i=1,2, \ldots, n$. The condition $H \mathbf{x}=0$ can be written in terms of the system of equations:

$$
\left\{\begin{array}{l}
x_{1}+x_{5}+x_{6}=0 \\
x_{1}+x_{2}+x_{6}=0 \\
x_{2}+x_{3}+x_{6}=0 \\
x_{1}+x_{4}+x_{6}=0
\end{array}\right.
$$

We find the following solutions :

$$
\mathbf{x}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

The minimal distance between the codewords is 3 thus one can only correct single errors.
(b) To correct 1 error and to detect two errors, the minimal Hamming distance has to be $d=4$. This corresponds to having the 3 linearly independent columns of H (see exercise 6-3). In particular, the last column of H can neither be equal to another column of H nor equal to a linear combination of any two columns. There are 5 columns given and the number of linear combinations of two of them is $\frac{5 \cdot(5-1)}{2}=10$. Remember that the column with all zeros is also forbidden, so this gives us $5+10+1=16$ different forbidden columns. Because the $h_{i, 6}$ are bits, only $2^{4}=16$ different combinations are possible, and they are all excluded by the argument above. Therefore the Hamming distance d can not be 4 .

6-2.

(a) The first 3 columns of G_{1} are linearly independent and correspond to $k=3$ bits of information, while the last two columns correspond to $m=2$ parity bits. There are thus $2^{k}=8$ codewords. The Hamming matrix has 2 rows (number of parity bits) and 5 columns (lengths of the codewords) and contains at least two linearly independent columns. H can be found by solving the equation $H \mathbf{w}=0$ for a codeword \mathbf{w}. We can try a solution of the form :

$$
\left(\begin{array}{ccccc}
h_{1,1} & h_{1,2} & h_{1,3} & 1 & 0 \\
h_{2,1} & h_{2,2} & h_{2,3} & 0 & 1
\end{array}\right)
$$

We find :

$$
\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

Since all codewords have at least two bits the minimal distance between the words is $d=2$. This code allows the detection of single errors without correcting them.
(b)

In this case $G_{2}, n=4$ and $k=1$. The number of codewords is $2^{k}=2$. $m=n-k=3$, which corresponds to 3 parity bits. Therefore 3 columns of H can be written as the identity matrix. We find :

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

The code has only two codewords :

$$
\mathbf{x}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

The Hamming distance is $d=4$. This is a repetition code which corrects single errors and detects double errors.

Remark: The transmission rate is given by $R=k / n$. We observe that $R_{G_{1}}=3 / 5$, but it does not permit to correct any error (can only detect single errors). In contrary $R_{G_{2}}=1 / 4$ but permits to correct single errors and detect double errors. There is a tradoff between the transmission rate and the possibility to correct errors.

6-3.

A Hamming code corrects up to $e-1$ errors and detects (but not necessarily correct) up to e errors iff the minimal Hamming distance is $d=2 e$. It remains to show that $d=2 e$ is equivalent to the requirement that all sets of $2 e-1$ columns of the parity matrix H are linearly independent.

If \mathbf{w}_{i} is a codeword one has $H \mathbf{w}_{i}=\mathbf{0}$. Let $\mathbf{w}_{j}=\mathbf{w}_{k}+\mathbf{z}$, thus the number of 1 s in \mathbf{z} (the weight $W(\mathbf{z}))$ is equal to the distance $d_{j k}$ between \mathbf{w}_{j} and \mathbf{w}_{k}. One has $H \mathbf{w}_{j}=H \mathbf{w}_{k}+H \mathbf{z}=0$ and $H \mathbf{w}_{k}=0$ since it is a codeword. One obtains $H \mathbf{z}=0$. This only holds if there are $d_{j k}$ columns of H that are linearly dependent.

But the minimal Hamming distance is $d=\min _{i j}\left\{d_{i j}\right\}$, that means : d is the smallest number of linearly dependent columns in H. This again means that one requires all sets of $d-1$ columns of H to be linearly independent. Thus, $d=2 e$ is equivalent to require that all sets of $2 e-1$ columns of H are linearly independent.

6-4.

Let \mathbf{w}_{i} be a codeword and $W\left(\mathbf{w}_{i}\right)$ its weight. The weight can be written as $W\left(\mathbf{w}_{i}\right)=d\left(\mathbf{w}_{i}, \mathbf{0}\right)$. We are going to use the distance property : $d\left(\mathbf{w}_{i}, \mathbf{w}_{j}\right)=d\left(\mathbf{w}_{i}-\mathbf{w}_{k}, \mathbf{w}_{j}-\mathbf{w}_{k}\right)$. By replacing k by j one obtains $d\left(\mathbf{w}_{i}, \mathbf{w}_{j}\right)=d\left(\mathbf{w}_{i}-\mathbf{w}_{j}, \mathbf{0}\right), \mathbf{w}_{i}-\mathbf{w}_{j}$ which is also a codeword because all codewords form a group.

Proof.

The definition of the minimal Hamming distance $d=\min _{i, j}\left\{d\left(\mathbf{w}_{i}, \mathbf{w}_{j}\right)\right\}$ implies in particular $\mathbf{w}_{j}=\mathbf{0}\left(\mathbf{0}\right.$ is always a codeword) $\forall i: d\left(\mathbf{w}_{i}, \mathbf{0}\right)=W\left(\mathbf{w}_{i}\right) \geq d$. But it also implies that there is at least one couple (l, m) such that $d\left(\mathbf{w}_{l}, \mathbf{w}_{m}\right)=d$ (since there are at least two codewords which attain the minimum), which offers the possibility to write $d\left(\mathbf{w}_{l}-\mathbf{w}_{m}, \mathbf{0}\right)=d$. There is thus a
$k \mathbf{w}_{k}=\mathbf{w}_{l}-\mathbf{w}_{m}$ satisfies $W\left(\mathbf{w}_{k}\right)=d$.
Inversely, if on assumes that $W(\mathbf{w}) \geq d$ then $\forall i, j \exists k: \mathbf{w}_{k}=\mathbf{w}_{i}-\mathbf{w}_{j}$ such that $d\left(\mathbf{w}_{i}, \mathbf{w}_{j}\right)=$ $d\left(\mathbf{w}_{i}-\mathbf{w}_{j}, \mathbf{0}\right)=W\left(\mathbf{w}_{k}\right) \geq d$. As there is a z such that $W\left(\mathbf{w}_{z}\right)=d$, one also has a pair (a, b) such that $d\left(\mathbf{w}_{a}, \mathbf{w}_{b}\right)=d\left(\mathbf{w}_{a}-\mathbf{w}_{b}, \mathbf{0}\right)=W\left(\mathbf{w}_{z}\right)=d$. On obtains thus $d=\min _{i, j}\left\{d\left(\mathbf{w}_{i}, \mathbf{w}_{j}\right)\right\}$.

