Information and coding Theory

Exercise sheet $\mathrm{n}^{\circ} 6$:

6-1. We define a Hamming code with the 4×6 parity matrix

$$
H=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & h_{1,6} \\
1 & 1 & 0 & 0 & 0 & h_{2,6} \\
0 & 1 & 1 & 0 & 0 & h_{3,6} \\
1 & 0 & 0 & 1 & 0 & h_{4,6}
\end{array}\right)
$$

(a) If one choses $h_{1,6}=h_{2,6}=h_{3,6}=h_{4,6}=1$, determine the list of codewords. What is the amount of information and parity bits? How many errors does this code correct?
(b) Show that the variables $h_{1,6}, h_{2,6}, h_{3,6}, h_{4,6}$ cannot be chosen in a way such that this code corrects a single error and detects as well (without correcting them) two errors.

Help : For a minimal Hamming distance x all sets of $x-1$ columns of H have to be linearly independent.

6-2. Generator of a Hamming code. We call a $k \times n$ matrix G with k linearly independent rows (codewords) a generator of a binary code (n, k). Each of the 2^{k} codewords can be thus expressed in terms of a linear combination of the rows of G.
(a) Determine the parity matrix of the code with the generator

$$
G_{1}=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

Which are the correction and/or detection properties of this code?
(b) The same question as (a) for the generator

$$
G_{2}=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right) .
$$

6-3. Hamming code. Show that a Hamming code corrects up to $e-1$ errors and detects (but does not necessarily correct) up to e errors if and only if all sets of $2 e-1$ columns of the parity matrix are linearly independent.

6-4. Optional. Show that the minimal distance of a Hamming code is equal to d if and only if all non-zero codewords have at least d bits equal to 1 , and at least one of them has exactly d bits equal to 1 .

