Exercise 1. A discrete random variable X has a uniform probability distribution $p(x)$ over the set \mathcal{X} of cardinality $m=|\mathcal{X}|$.
(a) Give an example for \mathcal{X} and calculate $p(x)$ for $x \in \mathcal{X}$.
(b) Determine the entropy $H(X)$ of X. If $m=64$, what is $H(X)$?
(c) How many bits are needed to enumerate the alphabet of \mathcal{X} without encoding, when $m=64$?
(d) How many symbols taken from a quaternary alphabet are necessary to enumerate \mathcal{X} without encoding, when $m=64$?
(e) Show that $H(X)$ is greater than the entropy of any other random variable Y, when Y takes values from the same set as \mathcal{X}. (Read the reminder on Lagrange multipliers.)

Exercise 2. A random variable X has an alphabet $\mathcal{X}=\{A, B, C, D\}$.
(a) Calculate $H\left(X_{p}\right)$ with associated probability distribution $p(X)=\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right\}$.
(b) Calculate $H\left(X_{q}\right)$ with associated probability distribution $q(X)=\left\{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right\}$.
(c) Consider the binary code defined by $\{C(\mathrm{X}=\mathrm{A})=0, C(\mathrm{X}=\mathrm{B})=10, C(\mathrm{X}=\mathrm{C})=110, C(\mathrm{X}=\mathrm{D})=111\}$. Calculate the expected length (in number of bits) of the codewords of X, when X obeys the distribution $p(X)$ and $q(X)$ respectively.
(d) Compare the four results.

Exercise 3. A fair coin is flipped repeatedly until one obtains "head". Let the random variable X be given by the number of flips until one obtains "head" for the first time.
(a) Calculate $H(X)$.
(b) Find a sequence of "yes/no" questions to determine the value of X. Compare the entropy of X with the expected length of the sequence of questions necessary to fully determine X.

Hint:

$$
\begin{aligned}
\sum_{n=1}^{\infty} r^{n} & =\frac{r}{1-r}, \\
\sum_{n=1}^{\infty} n \cdot r^{n} & =\frac{r}{(1-r)^{2}}, r<1 .
\end{aligned}
$$

Exercise 4. Let X and Y be two random variables. What is the inequality relating $H(X)$ and $H(Y)$ if,
(a) $Y=2^{X}$, with $\mathcal{X}=\{0,1,2,3,4\}$ with associated probability distribution $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{16}\right\}$.
(b) $Y=\cos (X)$, with $\mathcal{X}=\{0, \pi / 2, \pi, 3 \pi / 2,2 \pi\}$ with associated probability distribution $\left\{\frac{1}{3}, \frac{1}{3}, \frac{1}{12}, \frac{1}{12}, \frac{1}{6}\right\}$.
(c) Show that the entropy of any function $f(X)$ of the random variable X is less than or equal to the entropy of X. In order to prove this, it is useful to calculate the joint entropy $H(X, f(X))$. In which case the is inequality $H(f(X)) \leq H(X)$ saturated?

Exercise 5. Let X and Y be two random variables, which take the values $x_{1}, x_{2}, \cdots, x_{r}$ and $y_{1}, y_{2}, \cdots, y_{s}$. Furthermore, define a random variable $Z=X+Y$.
(a) Show that $H(Z \mid Y)=H(X \mid Y)$ and $H(Z \mid X)=H(Y \mid X)$. Deduce that if X and Y are independently distributed, then $H(X) \leq H(Z)$ and $H(Y) \leq H(Z)$. Thus, summing the two random variables can only increase the uncertainty.
(b) Give an example for X and Y (which should be correlated) such that $H(X)>H(Z)$ and $H(Y)>H(Z)$.
(c) In which case is the equality $H(Z)=H(X)+H(Y)$ satisfied?

Exercise 6. (Optional) Give an example of a distribution of two random variables X and Y whose correlation coefficient r (as defined below) is zero, even though they are not independent. Show that in this case $H(X: Y) \neq 0$, which shows that the mutual entropy is a better measure of the dependence of X and Y.

Definition. Correlation coefficient

$$
r=\frac{\langle x \cdot y\rangle-\langle x\rangle \cdot\langle y\rangle}{\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}} \sqrt{\left\langle y^{2}\right\rangle-\langle y\rangle^{2}}}
$$

Reminders

(a) How to change the base in logarithm:

$$
\log _{a} b=\log _{x} b / \log _{x} a
$$

(b) Lagrange theorem:

- To maximize
$u\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with k constraints $g_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{j}, j=1, \cdots, k$.
- Introduce the Lagrangian:
$L\left(x_{1}, \ldots, x_{n}, \lambda_{1}, \ldots, \lambda_{k}\right)=u\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\sum_{j=1}^{k} \lambda_{j}\left[a_{j}-g_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]$.
- With the condition of an extremum being:
$\forall i, \frac{\partial L}{\partial x_{i}}=0$.
- If u is concave, the solution is a maximum.

The exercises and solutions are available at http://quic.ulb.ac.be/teaching

