INFORMATION, CODING, COMPUTING AND COMPLEXITY THEORY Exercise Sheet 1

Exercise 1. A discrete random variable *X* has a uniform probability distribution p(x) over the set \mathcal{X} of cardinality $m = |\mathcal{X}|$.

- (a) Give an example for \mathcal{X} and calculate p(x) for $x \in \mathcal{X}$.
- (b) Determine the entropy H(X) of X. If m = 64, what is H(X)?
- (c) How many bits are needed to enulerate the alphabet of \mathcal{X} without encoding, when m = 64?
- (d) How many symbols taken from a quaternary alphabet are necessary to enumerate X without encoding, when m = 64?
- (e) Show that H(X) is greater than the entropy of any other random variable *Y*, when *Y* takes values from the same set as \mathcal{X} . (*Read the reminder on Lagrange multipliers.*)

Exercise 2. A random variable *X* has an alphabet $\mathcal{X} = \{A, B, C, D\}$.

- (a) Calculate $H(X_p)$ with associated probability distribution $p(X) = \{\frac{1}{1}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$.
- (b) Calculate $H(X_q)$ with associated probability distribution $q(X) = \{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\}$.
- (c) Consider the binary code defined by {C(X=A) = 0, C(X=B) = 10, C(X=C) = 110, C(X=D) = 111}.
 Calculate the expected length (in number of bits) of the codewords of *X*, when *X* obeys the distribution *p*(*X*) and *q*(*X*) respectively.
- (d) Compare the four results.

Exercise 3. A fair coin is flipped repeatedly until one obtains "head". Let the random variable *X* be given by the number of flips until one obtains "head" for the first time.

- (a) Calculate H(X).
- (b) Find a sequence of "yes/no" questions to determine the value of *X*. Compare the entropy of *X* with the expected length of the sequence of questions necessary to fully determine *X*.

Hint:

$$\sum_{n=1}^{\infty} r^n = \frac{r}{1-r},$$
$$\sum_{n=1}^{\infty} n \cdot r^n = \frac{r}{(1-r)^2}, r < 1.$$

Exercise 4. Let X and Y be two random variables. What is the inequality relating H(X) and H(Y) if,

- (a) $Y = 2^X$, with $\mathcal{X} = \{0, 1, 2, 3, 4\}$ with associated probability distribution $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{16}\}$.
- (b) $Y = \cos(X)$, with $\mathcal{X} = \{0, \pi/2, \pi, 3\pi/2, 2\pi\}$ with associated probability distribution $\{\frac{1}{3}, \frac{1}{3}, \frac{1}{12}, \frac{1}{12}, \frac{1}{6}\}$.
- (c) Show that the entropy of any function f(X) of the random variable X is less than or equal to the entropy of X. In order to prove this, it is useful to calculate the joint entropy H(X, f(X)). In which case the is inequality $H(f(X)) \le H(X)$ saturated?

Exercise 5. Let *X* and *Y* be two random variables, which take the values x_1, x_2, \dots, x_r and y_1, y_2, \dots, y_s . Furthermore, define a random variable Z = X + Y.

- (a) Show that H(Z|Y) = H(X|Y) and H(Z|X) = H(Y|X). Deduce that if *X* and *Y* are independently distributed, then $H(X) \le H(Z)$ and $H(Y) \le H(Z)$. Thus, summing the two random variables can only increase the uncertainty.
- (b) Give an example for *X* and *Y* (which should be correlated) such that H(X) > H(Z) and H(Y) > H(Z).
- (c) In which case is the equality H(Z) = H(X) + H(Y) satisfied?

Exercise 6. (Optional) Give an example of a distribution of two random variables *X* and *Y* whose correlation coefficient *r* (as defined below) is zero, even though they are not independent. Show that in this case $H(X:Y) \neq 0$, which shows that the mutual entropy is a better measure of the dependence of *X* and *Y*.

Definition. Correlation coefficient

$$r = \frac{\langle x \cdot y \rangle - \langle x \rangle \cdot \langle y \rangle}{\sqrt{\langle x^2 \rangle - \langle x \rangle^2} \sqrt{\langle y^2 \rangle - \langle y \rangle^2}}$$

Reminders

(a) How to change the base in logarithm:

$$\log_a b = \log_x b / \log_x a.$$

- (b) Lagrange theorem:
 - To maximize $u(x_1, x_2, ..., x_n)$ with k constraints $g_j(x_1, x_2, ..., x_n) = a_j, j = 1, \cdots, k$.
 - Introduce the Lagrangian: $L(x_1, ..., x_n, \lambda_1, ..., \lambda_k) = u(x_1, x_2, ..., x_n) + \sum_{j=1}^k \lambda_j [a_j - g_j(x_1, x_2, ..., x_n)].$
 - With the condition of an extremum being: $\forall i, \frac{\partial L}{\partial x_i} = 0.$
 - If *u* is concave, the solution is a maximum.

The exercises and solutions are available at http://quic.ulb.ac.be/teaching