NOTE: There were errors in the paper sheet distributed in class. This is a corrected version.
Exercise 1. Show that the minimum Hamming distance of a linear binary code is equal to d if and only if all non-zero codewords have at least d bits equal to 1 , and at least one of them has exactly d bits equal to 1 .

Exercise 2. Show that a linear binary code corrects up to $e-1$ errors and detects $2 e-1$ errors if and only if the minimal number of linearly dependent columns of the parity-check matrix is $2 e$.

Exercise 3. Consider a linear binary code with the 4×6 parity check matrix

$$
H=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & h_{1,6} \\
1 & 1 & 0 & 0 & 0 & h_{2,6} \\
0 & 1 & 1 & 0 & 0 & h_{3,6} \\
1 & 0 & 0 & 1 & 0 & h_{4,6}
\end{array}\right) .
$$

(a) If we set $h_{1,6}=h_{2,6}=h_{3,6}=h_{4,6}=1$, determine the list of codewords. What is the number of information and parity bits? How many errors does this code correct?
(b) Show that the variables $h_{1,6}, h_{2,6}, h_{3,6}, h_{4,6}$ cannot be chosen in such a way that the code corrects 1 -bit errors and detects (without correcting) 3-bit errors.

Hint: Use Exercise 2.
Exercise 4. The generator matrix of a linear binary (n, k) code is a $k \times n$ matrix G with k linearly independent rows (codewords). Each of the 2^{k} codewords can be expressed as linear combinations of the rows of G.
(a) Determine the parity check matrix of the code with generator matrix

$$
G_{1}=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1
\end{array}\right) .
$$

What are the detection/correction properties of this code?
(b) Same as question (a) but for the generator matrix

$$
G_{2}=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right) .
$$

The exercises and solutions are available at http://quic.ulb.ac.be/teaching

