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Solutions to Exercise Sheet 1

Exercise 1.

(a) Example: X = {0,1, . . . m− 1}. With p(x) = 1
m for x ∈ X .

(b) H(X ) = −
∑m−1

i=0 pi log2 pi = log2 m= 6 bits.

(c) 6 bits are needed since 26 = 64.

(d) 3 symbols are needed since 43 = 64.

(e) Define the Lagrangian L({pi}) = H(X ) +λ[
∑m−1

i=0 pi − 1].
Condition for an extremum:

∀i,
∂ L
∂ pi

= 0.

The distribution that maximizes H(X ) (note that H(X ) is concave) satisfies:

− log2 pi −
1

ln2
+λ= 0 ∀i.

It follows that pi = 2λ−
1

ln 2 , i.e. pi is a constant. If the constraint is applied then pi =
1
m .

Exercise 2.

(a) H(Xp) = 1.75 bits.

(b) H(Xq) = 2 bits.

(c) The expected length of the codewords is 1.75 bits for the distribution p and 2.25 bits for the
distribution q.

(d) The entropy gives the minimal expected length of codewords one can obtain. The binary code C is
optimal for the distribution p, since its expected length Lp = H(Xp). For the distribution q we find
Lq > H(Xq) and Lq > Lp, which implies that the code is not optimal. The optimal code for q is given
by a simple enumeration of the elements of X ; therefore it is impossible to compress that source.

Exercise 3. (a) H(X ) = 2 bits.

(b) Sequence of questions:
Did “head” come up on the first flip?
Did “head” come up on the second flip??
...
Did “head” come up on the nth flip?
One bit can be associated with the answer to each question. The answers to n questions are therefore
encoded in n bits. The expected number of “yes/no” questions is given by

∑∞
n=1 p(n)n= H(X ) = 2.

It is equal to the entropy, which shows that the sequence of questions is optimal.

Exercise 4.

(a) H(Y ) = H(X ) = 1.875 bits, because the function is bijective (i.e. fixing Y also fixes X ).

(b) The function is not bijective, so H(Y )< H(X ) with H(X ) = 1/2+ log2 3≈ 2.085 bits and H(Y ) =
3/2+ 1/2 log2 3− 5/12 log2 5≈ 1,325 bits.
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(c) H(X , f (X )) = H(X ) +H( f (X )|X ) but H( f (X )|X ) = 0, because knowing X fixes f (X ).
H( f (X ), X ) = H( f (X )) +H(X | f (X )) but H(X | f (X ))≥ 0.
Finally: H( f (X ), X ) = H(X , f (X )) implies H( f (X ))≤ H(X ).
It is saturated if H(X | f (X )) = 0, i.e. if the function Y = f (X ) is bijective.

Exercise 5.

(a) Definition of the conditional entropy: H(Y |X ) =
∑

x∈X p(x)H(Y |X = x).

H(Z |Y ) =
∑

y∈Y
p(y)H(Z |Y = y) =

∑

y∈Y
p(y)H(X + Y |Y = y) =

∑

y∈Y
p(y)H(X |Y = y) = H(X |Y ).

If X and Y are independent, then H(X |Y ) = H(X ).
As conditioning can only reduce the entropy: H(Z |Y )≤ H(Z).
We finally obtain H(X )≤ H(Z), and similarly H(Y )≤ H(Z).

(b) Example:

X
Y

-1 -2 -3 -4 P(X )

1 1/4 0 0 0 1/4
2 0 1/4 0 0 1/4
3 0 0 1/8 1/8 1/4
4 0 0 1/8 1/8 1/4

P(Y ) 1/4 1/4 1/4 1/4

How to compute H(X ) and H(Y ):
H(Y ) = H(X ) = H(1/4,1/4,1/4, 1/4) = log2 4= 2 bits.
We have Z ={3,2,1,0,−1,−2,−3} with P(Z = 0) = 3/4, P(Z = 1) = 1/8 and P(Z = −1) = 1/8.
All other probabilities are zero.
How to compute H(Z):
H(Z) = −3

4 log2
3
4 −

1
4 log2

1
8 = 1.061bits.

Note that H(X )> H(Z) and H(Y )> H(Z).

(c) We require that X and Y are independent and all zi, j = x i + y j are distinct for all pairs (i, j). If these
conditions are satisfied then pz(i, j) = px(i)py( j), which gives us the solution (after substituting it
in the definition of H(Z)).
Example: X = {1, 2, 3} and Y = {10, 20, 30, 40} for any probability distribution of X and Y , where
X and Y are independently distributed.

Exercise 6. Optional

Y
X

-1 0 1 P(Y )

-2 0 1/3 0 1/3
1 1/3 0 1/3 2/3

P(X ) 1/3 1/3 1/3

In this example, because 〈X 〉= 〈Y 〉= 〈X Y 〉= 0, which makes r = 0.
H(X : Y ) = H(X ) +H(Y )−H(X , Y ) = 0.918 bits.
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