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Solutions to Exercise Sheet 2

Exercise 1.

(a) First, we need to find the marginal probability distributions p(x) and p(y).
For this we use the relation p(x) =

∑

y p(x , y), which gives p(x) = p(y) = {1
3 , 1

3 , 1
3}.

Therefore H(X ) = −
∑

x p(x) log p(x) = H(Y ) = log 3 bits.

(b) H(X , Y ) = −
∑

x ,y p(x , y) log2 p(x , y) = 2 log 3− 4/9.

(c) In order to find H(X |Y ), we need to find p(x |y), which is given by p(x |y) = p(x , y)/p(y).
Using the definition of H(X |Y ), we obtain H(X |Y ) = −

∑

x ,y p(x , y) log2 p(x |y) = log 3− 4/9 bits.
With the same method, we find H(Y |X ) = log 3− 4/9 bits.

Alternatively, using the results of (a) and (b), we directly compute H(Y |X ) = H(X , Y )− H(X ) =
log3− 4/9= H(Y |X ).

(d) Using (a) and (b), we find I(X ; Y ) = H(Y )−H(Y |X ) = 4/9 bits.

(e) Cf. lecture notes or the Wikipedia page on mutual information1.

Exercise 2.

(a) By using the chain rule, H(X1, X2, ..., Xk) =
∑k

i=1 H(X i|X i−1, ...., X1).
The i-th draw with replacement implies that X i is independent of X j .

Thus, H(X1, X2, ..., Xk) =
∑k

i=1 H(X i).
As all draws have the same probability distribution, H(X1, X2, ..., Xk) = kH(X ).

(b) The i-th draw is described by the random variable X i. Since the i-th draw is independent of all
previous ones, and the color of the balls drawn during the first i − 1 draws is not known (e.g., it is
forgotten; the experiment can be also described as taking i − 1 balls from one urn and putting them
into another urn without looking at them), no information is gained prior to the i draw. Therefore,
the entropy does not change with i, yielding H(X i) = H(X ), where X stands for the color of the ball
at an arbitrary draw.

(c) We find that p(X1 = c1, X2 = c2) = p(X1 = c2, X2 = c1), where ci is a certain color.

To prove this, let the total number of balls in the urn be t = r + g + b. Then model the experiment
by a tree where each level represents a draw and each branch is labeled by a particular color. For
example, the probability that the first ball drawn is red is pr =

r
t , and the second ball drawn is green

is pg =
g

t−1 . Now if the order of the balls drawn is reversed, the probabilities become pg =
g
t and

pr =
r

t−1 , respectively. However, the product of the two probabilities remain the same:

r
t
·

g
t − 1

=
r

t − 1
·

g
t

This reasoning can be used for any path in the tree, proving the relation.

(d) The probability to draw a red ball with the second draw is given by

p(X2 = r) = p(X1 = r, X2 = r) + p(X1 = g, X2 = r) + p(X1 = b, X2 = r),

since getting a red ball for the second draw may be preceded by drawing a red, green or blue ball
first. By using the result of (c), we have

p(X2 = r) = p(X1 = r, X2 = r) + p(X1 = r, X2 = g) + p(X1 = r, X2 = b) = p(X1 = r).
1http://en.wikipedia.org/wiki/Mutual_information
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(e) The previous result shows that p(X2 = r) = p(X1 = r). Similarly, p(X2 = g) = p(X1 = g) and
p(X2 = b) = p(X1 = b).

(f) The marginal probabilities are the same for the first and second draw, i.e. p(X2 = ci) = p(X1 = ci),
thus H(X2) = H(X1).

The results of (e) and (f) can be trivially generalized for the subsequent draws: p(X1 = ci) = p(X2 =
ci) = · · · = p(Xk = ci), yielding H(X1) = H(X2) = · · · = H(Xk), what constitutes the constructive
proof of (b).

(g) By using the chain rule H(X i|X i−1, ...., X1) ≤ H(X i), we have (for dependent random variables)
H(X1, X2, ..., Xk)≤

∑k
i=1 H(X i).

Using H(X i) = H(X ), we get H(X1, X2, ..., Xk)≤ kH(X ).

Exercise 3.

(a) Using the definition of the conditional probability, one can write p(x , z|y) = p(x |y)p(z|x , y).
However, for the Markov chain p(z|x , y) = p(z|y), thus one obtains p(x , z|y) = p(x |y)p(z|y).

(b) The chain rule for mutual information is given by

I(X1, X2, ..., Xn;Y ) =
n
∑

i=1

I(X i;Y |X1, X2, ..., X i−1).

Thus, I(X ;Y, Z) = I(Y, Z;X ) = I(Y ;X ) + I(Z;X |Y ) and I(Y, Z;X ) = I(Z;X ) + I(Y ;X |Z).
Furthermore, we have the definition (see lecture)

I(Z;X |Y ) = −
∑

x yz

p(x , y, z) log
p(x |y)p(z|y)

p(z, x |y)
.

Using the result of (a), we conclude that I(Z;X |Y ) = 0. Taking into account that I(Y ;X |Z)≥ 0, one
obtains I(X ;Y )≥ I(X ;Z).

(c) Using the result of (b), I(X ;Z)≤ I(X ;Y ) = H(Y )−H(Y |X ). Now max{I(X ;Y )} = log k as H(Y |X )≥ 0
and max{H(Y )} = log k. The limit is reached if Y = f (X ) and Y is uniformly distributed. One finally
obtains the inequality I(X ;Z)≤ log k.

(d) If k = 1, then I(X ;Z) = 0. The set Y contains only one element, thus all information contained in X
is lost by the operation X → Y .

Exercise 4.

(a) The probability of a Bernoulli experiment in general reads p(x1, x2, ...xn) = pk(1− p)n−k. Since
for a typical sequence k ≈ np, we find the probability to emit a particular typical sequence:
p(x1, x2, ...xn) = pk(1− p)n−k ≈ pnp(1− p)n(1−p).
The latter can be approximate as a function of the entropy:

log p(x1, x2, ...xn)≈ np log p+ n(1− p) log(1− p) = −nH(p).

Thus, p(x1, x2, ...xn)≈ 2−nH(p).

(b) The number of typical sequences NST is given by the number of ways to have np ones in a sequence
of length n (or to get np successes for n trials in a Bernoulli experiment). Thus

NST =
�

n
np

�

=
n!

(np)!(n(1− p))!
.

By using the Stirling approximation one obtains log NST ≈ nH(p).
Comparison to the total number of sequences that can be emitted by the source: NST = 2nH(p) ≤ 2n.
The probability that the source emits a sequence that is typical is PST = pST NST ≈ 1 for n� 1.

(c) The most probable sequence 1111.....1 if p > 1/2 or 0000.....0 if p < 1/2. This sequence is not
typical.
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Exercise 5.

(a) By replacing H(Y |X ) = H(X , Y )−H(X ) in the definition of the distance, we obtain a desired equation
ρ(X , Y ) = 2H(X , Y )−H(X )−H(Y ). Furthermore, the definition I(X ;Y ) = H(X ) +H(Y )−H(X , Y )
gives us the second expression.

(b) Proof of the properties in order of appearance:

(1) ρ(x , y)≥ 0 since H(X |Y )≥ 0 and H(Y |X )≥ 0.

(2) ρ(x , y) = ρ(y, x) is trivially given by its definition.

(3) ρ(x , y) = 0 iff H(Y |X ) = H(X |Y ) = 0 , which holds iff there exists a bijection between X and Y .

(4) Let A = ρ(x , y) + ρ(y, z) − ρ(x , z). Using (a) we get A = 2[H(X , Y ) + H(Y, Z) − H(Y ) −
H(X , Z)]. Using the strong subadditivity H(X , Y ) + H(Y, Z) − H(Y ) ≥ H(X , Y, Z)), we have
A≥ 2[H(X , Y, Z)−H(X , Z)]≡ 2H(Y |X , Z)≥ 0.

Exercise 6.

(a) For instance if X = Y = Z = {0, 1}, X = Y = Z with uniform distributions.
We have I(X ;Y ) = 1 bit since I(X ;Y ) = H(Y )−H(Y |X ) and H(Y |X ) = 0 (because X are Y perfectly
correlated). We find I(X ;Y |Z) = 0 bit since (X , Y ) = f (Z). One verifies that I(X ;Y ;Z) > 0 and
I(X ;Y |Z)< I(X ;Y ).

(b) For instance if X = Y = Z = {0, 1} and Z = X ⊕ Y (sum mod 2), with:

Y =
P(X , Y ) 0 1

0 1/4 1/4 1/2
X = 1 1/4 1/4 1/2

1/2 1/2 1

We obtain I(X ;Y ) = 0 bit since X and Y are independent and thus H(Y |X ) = H(Y ).
Furthermore, I(X ;Y |Z) = H(X |Z) − H(X |Y, Z). In our example X is fixed if one knows Y and
Z . Thus, H(X |Y, Z) = 0. This implies I(X ;Y |Z) = H(X |Z). One obtains I(X ;Y |Z) = 1 bit. One
verifies that I(X ;Y ;Z) = −1 bit < 0 bit and I(X ;Y |Z) > I(X ;Y ). We confirm furthermore, that
I(X ;Z) = I(Y ;Z) = 0. Therefore, the corresponding Venn diagram is like in Fig. 1, which shows that
there is a negative overlap between the three random variables X , Y and Z .

Optional: An interesting exercise is to determine under which conditions (independence, perfect
correlation) on the three variables X , Y and Z one obtains a maximal or minimal I(X ;Y ;Z).
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H(Z)

H(X : Y : Z)

Figure 1: Venn diagram depicting the example of the Exercise 2(b).

4


