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INFORMATION AND CODING THEORY

Solutions to Exercise Sheet 2

Exercise 1.

(a) First, we need to find the marginal probability distributions p(x) and p(y).
For this we use the relation p(x) = Zy p(x, y), which gives p(x) =p(y) = {%, %, %}.
Therefore H(X) =—). p(x)logp(x) = H(Y) = log3 bits.

(b) HX,Y)=—-2., , p(x,y)log; p(x,y) = 2log3 —4/9.

(¢) In order to find H(X|Y), we need to find p(x|y), which is given by p(x|y) = p(x,¥)/p(y).
Using the definition of H(X|Y'), we obtain H(X|Y) = —Zx’yp(x,y)logz p(x|y) =1og3 —4/9 bits.
With the same method, we find H(Y|X) = log3 —4/9 bits.

Alternatively, using the results of (a) and (b), we directly compute H(Y|X) =H(X,Y)—H(X) =
log3—4/9=H(Y|X).

(d) Using (a) and (b), we find I(X;Y)=H(Y)—H(Y|X) = 4/9 bits.
(e) Cf. lecture notes or the Wikipedia page on mutual information®.
Exercise 2.

(a) By using the chain rule, H(X{,X5,...,X}) = Zle HX|X_1, ..o, X7).
The i-th draw with replacement implies that X; is independent of X;.
k
Thus, H(X1, X5, ..., Xx) = 2 HX)).
As all draws have the same probability distribution, H(X;, X5, ...,X;) = kH(X).

(b) The i-th draw is described by the random variable X;. Since the i-th draw is independent of all
previous ones, and the color of the balls drawn during the first i — 1 draws is not known (e.g., it is
forgotten; the experiment can be also described as taking i — 1 balls from one urn and putting them
into another urn without looking at them), no information is gained prior to the i draw. Therefore,
the entropy does not change with i, yielding H(X;) = H(X), where X stands for the color of the ball
at an arbitrary draw.

(c) We find that p(X; = ¢1,X5 =¢y) = p(X; = ¢5,X5 = c1), where ¢; is a certain color.

To prove this, let the total number of balls in the urn be t = r + g + b. Then model the experiment
by a tree where each level represents a draw and each branch is labeled by a particular color. For
example, the probability that the first ball drawn is red is p, = 7, and the second ball drawn is green
isp, = tfl. Now if the order of the balls drawn is reversed, the probabilities become p, = ¢ and

pr = =3, respectively. However, the product of the two probabilities remain the same:

r £ r g

t t—1 -1 ¢
This reasoning can be used for any path in the tree, proving the relation.
(d) The probability to draw a red ball with the second draw is given by
pXo=r)=pX;=nrX,=r)+pX; =g, X, =1r)+pX; =b,Xy,=71),

since getting a red ball for the second draw may be preceded by drawing a red, green or blue ball
first. By using the result of (c), we have

pXo=r)=pX;=rX,=r)+pX; =1X,=¢g)+p(X; =1,X,=b)=pX; =71).

http://en.wikipedia.org/wiki/Mutual_information
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The previous result shows that p(X, = r) = p(X; = r). Similarly, p(X, = g) = p(X; = g) and
p(Xy =b) =p(X; = b).

The marginal probabilities are the same for the first and second draw, i.e. p(X, =¢;) = p(X; =¢;),
thus H(Xz) = H(Xl).

The results of (e) and (f) can be trivially generalized for the subsequent draws: p(X; =¢;) =p(Xy =
¢;) =+ =pXr =¢;), yielding H(X;) = H(X,) = - -- = H(X}), what constitutes the constructive
proof of (b).

By using the chain rule H(X;|X;_,,....,X;) < H(X;), we have (for dependent random variables)
k

H(X1,X5,...., X)) < D5 HX)).

Using H(X;) = H(X), we get H(X;,X5,...,X;) < kH(X).

Exercise 3.

(@

(b)

(o)

Using the definition of the conditional probability, one can write p(x,z|y) = p(x|y)p(z|x,y).
However, for the Markov chain p(z|x, y) = p(z|y), thus one obtains p(x,z|y) = p(x|y)p(z|y).

The chain rule for mutual information is given by

n
10X, X5, o0 Xpi¥) = D TGV X1, X, o0 Xiy).
i=1
Thus, I(X;Y,Z) = I(Y, Z;X) = I(Y:X) + (Z:X|Y) and I(Y, Z;X) = I(Z;X) + I(Y ;X|2).
Furthermore, we have the definition (see lecture)

p(x|y)p(zly)
, __ log ——————.
I(Z:X|Y) ;P(X’y’z) o, xly)

Using the result of (a), we conclude that I(Z;X|Y) = 0. Taking into account that I(Y;X|Z) = 0, one
obtains I(X;Y) = I(X;Z).

Using the result of (b), I(X;Z) < I(X;Y)=H(Y)—H(Y|X). Nowmax{I(X;Y)} =logkasH(Y|X) =0
and max{H(Y)} = logk. The limit is reached if Y = f(X) and Y is uniformly distributed. One finally
obtains the inequality I(X;Z) < logk.

(d) If k=1, then I(X;Z) = 0. The set ) contains only one element, thus all information contained in X
is lost by the operation X — Y.

Exercise 4.

(a) The probability of a Bernoulli experiment in general reads p(x, X, ...x,) = p*(1 — p)™*. Since

(b)

(o)

for a typical sequence k ~ np, we find the probability to emit a particular typical sequence:
p(x1, X3, ...x) = p*(1 = p)** ~ p™(1—p)"7P).
The latter can be approximate as a function of the entropy:

log p(x1, X3, ...x,) ~ nplogp + n(1—p)log(1—p) = —nH(p).

Thus, p(x1, X3, ...x,) A& 2P,

The number of typical sequences Ny is given by the number of ways to have np ones in a sequence
of length n (or to get np successes for n trials in a Bernoulli experiment). Thus

n!

n !
Nsr = (np) = ) —p)!

By using the Stirling approximation one obtains log Ny ~ nH(p).
Comparison to the total number of sequences that can be emitted by the source: Ny = 2™H®) < 27,
The probability that the source emits a sequence that is typical is Pt = pgrNgr ~ 1 for n > 1.

The most probable sequence 1111.....1 if p > 1/2 or 0000.....0 if p < 1/2. This sequence is not
typical.



Exercise 5.

(a) Byreplacing H(Y|X) = H(X,Y)—H(X) in the definition of the distance, we obtain a desired equation

(b)

p(X,Y)=2H(X,Y)—H(X)— H(Y). Furthermore, the definition I(X;Y)=H(X)+H(Y)—H(X,Y)
gives us the second expression.

Proof of the properties in order of appearance:

(1) p(x,y)=0since H(X|Y)>0and H(Y|X) > 0.
(2) p(x,y)=p(y,x) is trivially given by its definition.
(3) p(x,y)=0iff H(Y|X) = H(X|Y) = 0, which holds iff there exists a bijection between X and Y.

(4) Let A = p(x,y)+ p(y,2) — p(x,2). Using (a) we get A = 2[H(X,Y)+ H(Y,Z)—H(Y) —
H(X,Z)]. Using the strong subadditivity H(X,Y) + H(Y,Z) —H(Y) > H(X,Y,Z)), we have
A>2[H(X,Y,Z)—H(X,Z)] = 2H(Y|X,Z) > 0.

Exercise 6.
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(b)

For instance if ¥ =Y = Z=1{0,1}, X =Y = Z with uniform distributions.

We have I(X;Y) =1 bit since I(X;Y)=H(Y)—H(Y|X) and H(Y|X) = 0 (because X are Y perfectly
correlated). We find I(X;Y|Z) = 0 bit since (X,Y) = f(Z). One verifies that I(X;Y;Z) > 0 and
I(X;Y|Z) < I(X;Y).

Forinstance if ¥ =Y =2Z={0,1} and Z =X &Y (sum mod 2), with:

vy= |
PX,Y)| 0 1
01/4 1/4|1/2
X= 1|1/4 1/4|1/2
1/2 1/2| 1

We obtain I(X;Y) = 0 bit since X and Y are independent and thus H(Y |X) = H(Y).

Furthermore, I(X;Y|Z) = H(X|Z) —H(X|Y,Z). In our example X is fixed if one knows Y and
Z. Thus, H(X|Y,Z) = 0. This implies I(X;Y|Z) = H(X|Z). One obtains I(X;Y|Z) = 1 bit. One
verifies that I(X;Y;Z) = —1 bit < 0 bit and I(X;Y|Z) > I(X;Y). We confirm furthermore, that
I(X;Z)=1(Y;Z) = 0. Therefore, the corresponding Venn diagram is like in Fig. 1, which shows that
there is a negative overlap between the three random variables X,Y and Z.

Optional: An interesting exercise is to determine under which conditions (independence, perfect
correlation) on the three variables X,Y and Z one obtains a maximal or minimal I(X;Y;Z).
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Figure 1: Venn diagram depicting the example of the Exercise 2(b).



