Solutions to Exercise Sheet 2

Exercise 1.

(a) First, we need to find the marginal probability distributions $p(x)$ and $p(y)$.

For this we use the relation $p(x)=\sum_{y} p(x, y)$, which gives $p(x)=p(y)=\left\{\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\}$.
Therefore $H(X)=-\sum_{x} p(x) \log p(x)=H(Y)=\log 3$ bits.
(b) $H(X, Y)=-\sum_{x, y} p(x, y) \log _{2} p(x, y)=2 \log 3-4 / 9$.
(c) In order to find $H(X \mid Y)$, we need to find $p(x \mid y)$, which is given by $p(x \mid y)=p(x, y) / p(y)$.

Using the definition of $H(X \mid Y)$, we obtain $H(X \mid Y)=-\sum_{x, y} p(x, y) \log _{2} p(x \mid y)=\log 3-4 / 9$ bits. With the same method, we find $H(Y \mid X)=\log 3-4 / 9$ bits.
Alternatively, using the results of (a) and (b), we directly compute $H(Y \mid X)=H(X, Y)-H(X)=$ $\log 3-4 / 9=H(Y \mid X)$.
(d) Using (a) and (b), we find $I(X ; Y)=H(Y)-H(Y \mid X)=4 / 9$ bits.
(e) Cf. lecture notes or the Wikipedia page on mutual information ${ }^{1}$.

Exercise 2.

(a) By using the chain rule, $H\left(X_{1}, X_{2}, \ldots, X_{k}\right)=\sum_{i=1}^{k} H\left(X_{i} \mid X_{i-1}, \ldots ., X_{1}\right)$.

The i-th draw with replacement implies that X_{i} is independent of X_{j}.
Thus, $H\left(X_{1}, X_{2}, \ldots, X_{k}\right)=\sum_{i=1}^{k} H\left(X_{i}\right)$.
As all draws have the same probability distribution, $H\left(X_{1}, X_{2}, \ldots, X_{k}\right)=k H(X)$.
(b) The i-th draw is described by the random variable X_{i}. Since the i-th draw is independent of all previous ones, and the color of the balls drawn during the first $i-1$ draws is not known (e.g., it is forgotten; the experiment can be also described as taking $i-1$ balls from one urn and putting them into another urn without looking at them), no information is gained prior to the i draw. Therefore, the entropy does not change with i, yielding $H\left(X_{i}\right)=H(X)$, where X stands for the color of the ball at an arbitrary draw.
(c) We find that $p\left(X_{1}=c_{1}, X_{2}=c_{2}\right)=p\left(X_{1}=c_{2}, X_{2}=c_{1}\right)$, where c_{i} is a certain color.

To prove this, let the total number of balls in the urn be $t=r+g+b$. Then model the experiment by a tree where each level represents a draw and each branch is labeled by a particular color. For example, the probability that the first ball drawn is red is $p_{r}=\frac{r}{t}$, and the second ball drawn is green is $p_{g}=\frac{g}{t-1}$. Now if the order of the balls drawn is reversed, the probabilities become $p_{g}=\frac{g}{t}$ and $p_{r}=\frac{r}{t-1}$, respectively. However, the product of the two probabilities remain the same:

$$
\frac{r}{t} \cdot \frac{g}{t-1}=\frac{r}{t-1} \cdot \frac{g}{t}
$$

This reasoning can be used for any path in the tree, proving the relation.
(d) The probability to draw a red ball with the second draw is given by

$$
p\left(X_{2}=r\right)=p\left(X_{1}=r, X_{2}=r\right)+p\left(X_{1}=g, X_{2}=r\right)+p\left(X_{1}=b, X_{2}=r\right)
$$

since getting a red ball for the second draw may be preceded by drawing a red, green or blue ball first. By using the result of (c), we have

$$
p\left(X_{2}=r\right)=p\left(X_{1}=r, X_{2}=r\right)+p\left(X_{1}=r, X_{2}=g\right)+p\left(X_{1}=r, X_{2}=b\right)=p\left(X_{1}=r\right)
$$

[^0](e) The previous result shows that $p\left(X_{2}=r\right)=p\left(X_{1}=r\right)$. Similarly, $p\left(X_{2}=g\right)=p\left(X_{1}=g\right)$ and $p\left(X_{2}=b\right)=p\left(X_{1}=b\right)$.
(f) The marginal probabilities are the same for the first and second draw, i.e. $p\left(X_{2}=c_{i}\right)=p\left(X_{1}=c_{i}\right)$, thus $H\left(X_{2}\right)=H\left(X_{1}\right)$.
The results of (e) and (f) can be trivially generalized for the subsequent draws: $p\left(X_{1}=c_{i}\right)=p\left(X_{2}=\right.$ $\left.c_{i}\right)=\cdots=p\left(X_{k}=c_{i}\right)$, yielding $H\left(X_{1}\right)=H\left(X_{2}\right)=\cdots=H\left(X_{k}\right)$, what constitutes the constructive proof of (b).
(g) By using the chain rule $H\left(X_{i} \mid X_{i-1}, \ldots ., X_{1}\right) \leq H\left(X_{i}\right)$, we have (for dependent random variables) $H\left(X_{1}, X_{2}, \ldots, X_{k}\right) \leq \sum_{i=1}^{k} H\left(X_{i}\right)$.
Using $H\left(X_{i}\right)=H(X)$, we get $H\left(X_{1}, X_{2}, \ldots, X_{k}\right) \leq k H(X)$.

Exercise 3.

(a) Using the definition of the conditional probability, one can write $p(x, z \mid y)=p(x \mid y) p(z \mid x, y)$. However, for the Markov chain $p(z \mid x, y)=p(z \mid y)$, thus one obtains $p(x, z \mid y)=p(x \mid y) p(z \mid y)$.
(b) The chain rule for mutual information is given by

$$
I\left(X_{1}, X_{2}, \ldots, X_{n} ; Y\right)=\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{1}, X_{2}, \ldots, X_{i-1}\right) .
$$

Thus, $I(X ; Y, Z)=I(Y, Z ; X)=I(Y ; X)+I(Z ; X \mid Y)$ and $I(Y, Z ; X)=I(Z ; X)+I(Y ; X \mid Z)$.
Furthermore, we have the definition (see lecture)

$$
I(Z ; X \mid Y)=-\sum_{x y z} p(x, y, z) \log \frac{p(x \mid y) p(z \mid y)}{p(z, x \mid y)} .
$$

Using the result of (a), we conclude that $I(Z ; X \mid Y)=0$. Taking into account that $I(Y ; X \mid Z) \geq 0$, one obtains $I(X ; Y) \geq I(X ; Z)$.
(c) Using the result of (b), $I(X ; Z) \leq I(X ; Y)=H(Y)-H(Y \mid X)$. Now $\max \{I(X ; Y)\}=\log k$ as $H(Y \mid X) \geq 0$ and $\max \{H(Y)\}=\log k$. The limit is reached if $Y=f(X)$ and Y is uniformly distributed. One finally obtains the inequality $I(X ; Z) \leq \log k$.
(d) If $k=1$, then $I(X ; Z)=0$. The set \mathcal{Y} contains only one element, thus all information contained in X is lost by the operation $X \rightarrow Y$.

Exercise 4.

(a) The probability of a Bernoulli experiment in general reads $p\left(x_{1}, x_{2}, \ldots x_{n}\right)=p^{k}(1-p)^{n-k}$. Since for a typical sequence $k \approx n p$, we find the probability to emit a particular typical sequence: $p\left(x_{1}, x_{2}, \ldots x_{n}\right)=p^{k}(1-p)^{n-k} \approx p^{n p}(1-p)^{n(1-p)}$.
The latter can be approximate as a function of the entropy:

$$
\log p\left(x_{1}, x_{2}, \ldots x_{n}\right) \approx n p \log p+n(1-p) \log (1-p)=-n H(p)
$$

Thus, $p\left(x_{1}, x_{2}, \ldots x_{n}\right) \approx 2^{-n H(p)}$.
(b) The number of typical sequences $N_{S T}$ is given by the number of ways to have $n p$ ones in a sequence of length n (or to get $n p$ successes for n trials in a Bernoulli experiment). Thus

$$
N_{S T}=\binom{n}{n p}=\frac{n!}{(n p)!(n(1-p))!} .
$$

By using the Stirling approximation one obtains $\log N_{S T} \approx n H(p)$.
Comparison to the total number of sequences that can be emitted by the source: $N_{S T}=2^{n H(p)} \leq 2^{n}$. The probability that the source emits a sequence that is typical is $P_{S T}=p_{S T} N_{S T} \approx 1$ for $n \gg 1$.
(c) The most probable sequence $1111 \ldots . .1$ if $p>1 / 2$ or $0000 \ldots . . .0$ if $p<1 / 2$. This sequence is not typical.

Exercise 5.

(a) By replacing $H(Y \mid X)=H(X, Y)-H(X)$ in the definition of the distance, we obtain $\rho(X, Y)=$ $2 H(X, Y)-H(X)-H(Y)$. Furthermore, the definition $I(X ; Y)=H(X)+H(Y)-H(X, Y)$ gives us the second expression.
(b) Proof of the properties in order of appearance:
(1) $\rho(x, y) \geq 0$ since $H(X \mid Y) \geq 0$ and $H(Y \mid X) \geq 0$.
(2) $\rho(x, y)=\rho(y, x)$ is trivially given by its definition.
(3) $\rho(x, y)=0$ iff $H(Y \mid X)=H(X \mid Y)=0$, which holds iff there exists a bijection between X and Y.
(4) Let $A=\rho(x, y)+\rho(y, z)-\rho(x, z)$. Using (a) we get $A=2[H(X, Y)+H(Y, Z)-H(Y)-$ $H(X, Z)]$. Using the strong subadditivity $H(X, Y)+H(Y, Z)-H(Y) \geq H(X, Y, Z)$), we have $A \geq 2[H(X, Y, Z)-H(X, Z)] \equiv 2 H(Y \mid X, Z) \geq 0$.

Exercise 6.

(a) For instance if $\mathcal{X}=\mathcal{Y}=\mathcal{Z}=\{0,1\}, X=Y=Z$ with uniform distributions.

We have $I(X ; Y)=1$ bit since $I(X ; Y)=H(Y)-H(Y \mid X)$ and $H(Y \mid X)=0$ (because X are Y perfectly correlated). We find $I(X ; Y \mid Z)=0$ bit since $(X, Y)=f(Z)$. One verifies that $I(X ; Y ; Z)>0$ and $I(X ; Y \mid Z)<I(X ; Y)$.
(b) For instance if $\mathcal{X}=\mathcal{Y}=\mathcal{Z}=\{0,1\}$ and $Z=X \oplus Y(\operatorname{sum} \bmod 2)$, with:

	$Y=$		
$\mathrm{P}(X, Y)$	0	1	
	0	$1 / 4$	$1 / 4$
$X=$	1	$1 / 4$	$1 / 4$

We obtain $I(X ; Y)=0$ bit since X and Y are independent and thus $H(Y \mid X)=H(Y)$.
Furthermore, $I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z)$. In our example X is fixed if one knows Y and Z. Thus, $H(X \mid Y, Z)=0$. This implies $I(X ; Y \mid Z)=H(X \mid Z)$. One obtains $I(X ; Y \mid Z)=1$ bit. One verifies that $I(X ; Y ; Z)=-1$ bit <0 bit and $I(X ; Y \mid Z)>I(X ; Y)$. We confirm furthermore, that $I(X ; Z)=I(Y ; Z)=0$. Therefore, the corresponding Venn diagram is like in Fig. 1, which shows that there is a negative overlap between the three random variables X, Y and Z.

Optional: An interesting exercise is to determine under which conditions (independence, perfect correlation) on the three variables X, Y and Z one obtains a maximal or minimal $I(X ; Y ; Z)$.

Figure 1: Venn diagram depicting the example of the Exercise 6(b).

[^0]: ${ }^{1}$ http://en.wikipedia.org/wiki/Mutual_information

