Information and Coding Theory

Solutions to Exercise Sheet 2

Exercise 1.

- (a) First, we need to find the marginal probability distributions p(x) and p(y). For this we use the relation $p(x) = \sum_y p(x, y)$, which gives $p(x) = p(y) = \{\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\}$. Therefore $H(X) = -\sum_x p(x) \log p(x) = H(Y) = \log 3$ bits.
- (b) $H(X,Y) = -\sum_{x,y} p(x,y) \log_2 p(x,y) = 2\log 3 4/9.$
- (c) In order to find H(X|Y), we need to find p(x|y), which is given by p(x|y) = p(x,y)/p(y). Using the definition of H(X|Y), we obtain $H(X|Y) = -\sum_{x,y} p(x,y) \log_2 p(x|y) = \log 3 4/9$ bits. With the same method, we find $H(Y|X) = \log 3 4/9$ bits.

Alternatively, using the results of (a) and (b), we directly compute $H(Y|X) = H(X,Y) - H(X) = \log 3 - 4/9 = H(Y|X)$.

- (d) Using (a) and (b), we find I(X; Y) = H(Y) H(Y|X) = 4/9 bits.
- (e) Cf. lecture notes or the Wikipedia page on mutual information¹.

Exercise 2.

- (a) By using the chain rule, $H(X_1, X_2, ..., X_k) = \sum_{i=1}^k H(X_i | X_{i-1}, ..., X_1)$. The i-th draw with replacement implies that X_i is independent of X_j . Thus, $H(X_1, X_2, ..., X_k) = \sum_{i=1}^k H(X_i)$. As all draws have the same probability distribution, $H(X_1, X_2, ..., X_k) = kH(X)$.
- (b) The i-th draw is described by the random variable X_i . Since the i-th draw is independent of all previous ones, and the color of the balls drawn during the first i-1 draws is not known (e.g., it is forgotten; the experiment can be also described as taking i-1 balls from one urn and putting them into another urn without looking at them), **no information is gained** prior to the i draw. Therefore, the entropy does not change with i, yielding $H(X_i) = H(X)$, where X stands for the color of the ball at an arbitrary draw.
- (c) We find that $p(X_1 = c_1, X_2 = c_2) = p(X_1 = c_2, X_2 = c_1)$, where c_i is a certain color. To prove this, let the total number of balls in the urn be t = r + g + b. Then model the experiment by a tree where each level represents a draw and each branch is labeled by a particular color. For example, the probability that the first ball drawn is red is $p_r = \frac{r}{t}$, and the second ball drawn is green is $p_g = \frac{g}{t-1}$. Now if the order of the balls drawn is reversed, the probabilities become $p_g = \frac{g}{t}$ and $p_r = \frac{r}{t-1}$, respectively. However, the product of the two probabilities remain the same:

$$\frac{r}{t} \cdot \frac{g}{t-1} = \frac{r}{t-1} \cdot \frac{g}{t}$$

This reasoning can be used for any path in the tree, proving the relation.

(d) The probability to draw a red ball with the second draw is given by

$$p(X_2 = r) = p(X_1 = r, X_2 = r) + p(X_1 = g, X_2 = r) + p(X_1 = b, X_2 = r),$$

since getting a red ball for the second draw may be preceded by drawing a red, green or blue ball first. By using the result of (c), we have

$$p(X_2 = r) = p(X_1 = r, X_2 = r) + p(X_1 = r, X_2 = g) + p(X_1 = r, X_2 = b) = p(X_1 = r).$$

¹http://en.wikipedia.org/wiki/Mutual_information

- (e) The previous result shows that $p(X_2 = r) = p(X_1 = r)$. Similarly, $p(X_2 = g) = p(X_1 = g)$ and $p(X_2 = b) = p(X_1 = b)$.
- (f) The marginal probabilities are the same for the first and second draw, i.e. $p(X_2 = c_i) = p(X_1 = c_i)$, thus $H(X_2) = H(X_1)$.

The results of (e) and (f) can be trivially generalized for the subsequent draws: $p(X_1 = c_i) = p(X_2 = c_i) = \cdots = p(X_k = c_i)$, yielding $H(X_1) = H(X_2) = \cdots = H(X_k)$, what constitutes the constructive proof of (b).

(g) By using the chain rule $H(X_i|X_{i-1},...,X_1) \leq H(X_i)$, we have (for dependent random variables) $H(X_1,X_2,...,X_k) \leq \sum_{i=1}^k H(X_i)$. Using $H(X_i) = H(X)$, we get $H(X_1,X_2,...,X_k) \leq kH(X)$.

Exercise 3.

- (a) Using the definition of the conditional probability, one can write p(x,z|y) = p(x|y)p(z|x,y). However, for the Markov chain p(z|x,y) = p(z|y), thus one obtains p(x,z|y) = p(x|y)p(z|y).
- (b) The chain rule for mutual information is given by

$$I(X_1, X_2, ..., X_n; Y) = \sum_{i=1}^{n} I(X_i; Y | X_1, X_2, ..., X_{i-1}).$$

Thus, I(X;Y,Z) = I(Y,Z;X) = I(Y;X) + I(Z;X|Y) and I(Y,Z;X) = I(Z;X) + I(Y;X|Z). Furthermore, we have the definition (see lecture)

$$I(Z;X|Y) = -\sum_{x,y,z} p(x,y,z) \log \frac{p(x|y)p(z|y)}{p(z,x|y)}.$$

Using the result of (a), we conclude that I(Z;X|Y) = 0. Taking into account that $I(Y;X|Z) \ge 0$, one obtains $I(X;Y) \ge I(X;Z)$.

- (c) Using the result of (b), $I(X;Z) \le I(X;Y) = H(Y) H(Y|X)$. Now $\max\{I(X;Y)\} = \log k$ as $H(Y|X) \ge 0$ and $\max\{H(Y)\} = \log k$. The limit is reached if Y = f(X) and Y is uniformly distributed. One finally obtains the inequality $I(X;Z) \le \log k$.
- (d) If k = 1, then I(X;Z) = 0. The set \mathcal{Y} contains only one element, thus all information contained in X is lost by the operation $X \to Y$.

Exercise 4.

(a) The probability of a Bernoulli experiment in general reads $p(x_1, x_2, ... x_n) = p^k (1-p)^{n-k}$. Since for a typical sequence $k \approx np$, we find the probability to emit a particular typical sequence: $p(x_1, x_2, ... x_n) = p^k (1-p)^{n-k} \approx p^{np} (1-p)^{n(1-p)}$.

The latter can be approximate as a function of the entropy:

$$\log p(x_1, x_2, ...x_n) \approx np \log p + n(1-p) \log(1-p) = -nH(p).$$

Thus, $p(x_1, x_2, ...x_n) \approx 2^{-nH(p)}$.

(b) The number of typical sequences N_{ST} is given by the number of ways to have np ones in a sequence of length n (or to get np successes for n trials in a Bernoulli experiment). Thus

$$N_{ST} = \binom{n}{np} = \frac{n!}{(np)!(n(1-p))!}.$$

By using the Stirling approximation one obtains $\log N_{ST} \approx nH(p)$. Comparison to the total number of sequences that can be emitted by the source: $N_{ST} = 2^{nH(p)} \le 2^n$. The probability that the source emits a sequence that is typical is $P_{ST} = p_{ST}N_{ST} \approx 1$ for $n \gg 1$.

(c) The most probable sequence 1111.....1 if p > 1/2 or 0000.....0 if p < 1/2. This sequence is not typical.

Exercise 5.

- (a) By replacing H(Y|X) = H(X,Y) H(X) in the definition of the distance, we obtain $\rho(X,Y) = 2H(X,Y) H(X) H(Y)$. Furthermore, the definition I(X;Y) = H(X) + H(Y) H(X,Y) gives us the second expression.
- (b) Proof of the properties in order of appearance:
 - (1) $\rho(x,y) \ge 0$ since $H(X|Y) \ge 0$ and $H(Y|X) \ge 0$.
 - (2) $\rho(x, y) = \rho(y, x)$ is trivially given by its definition.
 - (3) $\rho(x,y) = 0$ iff H(Y|X) = H(X|Y) = 0, which holds iff there exists a bijection between X and Y.
 - (4) Let $A = \rho(x, y) + \rho(y, z) \rho(x, z)$. Using (a) we get A = 2[H(X, Y) + H(Y, Z) H(Y) H(X, Z)]. Using the strong subadditivity $H(X, Y) + H(Y, Z) H(Y) \ge H(X, Y, Z)$, we have $A \ge 2[H(X, Y, Z) H(X, Z)] \equiv 2H(Y|X, Z) \ge 0$.

Exercise 6.

- (a) For instance if $X = Y = Z = \{0, 1\}$, X = Y = Z with uniform distributions. We have I(X;Y) = 1 bit since I(X;Y) = H(Y) H(Y|X) and H(Y|X) = 0 (because X are Y perfectly correlated). We find I(X;Y|Z) = 0 bit since (X,Y) = f(Z). One verifies that I(X;Y;Z) > 0 and I(X;Y|Z) < I(X;Y).
- (b) For instance if $\mathcal{X} = \mathcal{Y} = \mathcal{Z} = \{0, 1\}$ and $Z = X \oplus Y$ (sum mod 2), with:

		Y =		
P(X, X)	Y)	0	1	
	0	1/4	1/4	1/2
X =	1	1/4	1/4	1/2
		1/2	1/2	1

We obtain I(X;Y) = 0 bit since X and Y are independent and thus H(Y|X) = H(Y). Furthermore, I(X;Y|Z) = H(X|Z) - H(X|Y,Z). In our example X is fixed if one knows Y and Z. Thus, H(X|Y,Z) = 0. This implies I(X;Y|Z) = H(X|Z). One obtains I(X;Y|Z) = 1 bit. One verifies that I(X;Y;Z) = -1 bit < 0 bit and I(X;Y|Z) > I(X;Y). We confirm furthermore, that

verifies that I(X;Y;Z) = -1 bit < 0 bit and I(X;Y|Z) > I(X;Y). We confirm furthermore, that I(X;Z) = I(Y;Z) = 0. Therefore, the corresponding Venn diagram is like in Fig. 1, which shows that there is a *negative* overlap between the three random variables X, Y and Z.

Optional: An interesting exercise is to determine under which conditions (independence, perfect correlation) on the three variables X, Y and Z one obtains a maximal or minimal I(X;Y;Z).

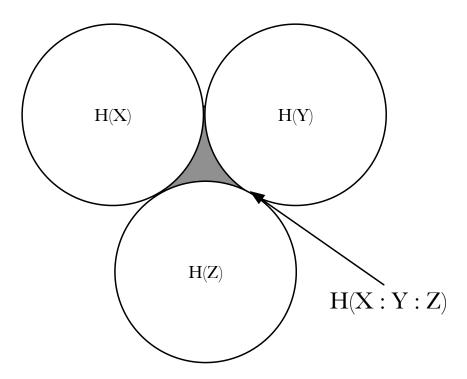


Figure 1: Venn diagram depicting the example of the Exercise 6(b).