Solutions to Exercise Sheet 3

Exercise 1.

(a) The code $\{\mathcal{C}(A)=0, \mathcal{C}(B)=0\}$ is singular. It is neither uniquely decodable nor instantaneous.
(b) The code $\{\mathcal{C}(A)=0, \mathcal{C}(B)=010, \mathcal{C}(C)=01, \mathcal{C}(D)=10\}$ is trivially nonsingular. It is not instantaneous, because the first codeword " 0 " is a prefix of the second one " 01 ". The code is not uniquely decodable. For example, the sequence 010 can be associated with three distinct codewords $B, A D$ or CA.
(c) The code $\{\mathcal{C}(A)=10, \mathcal{C}(B)=00, \mathcal{C}(C)=11, \mathcal{C}(D)=110\}$ is trivially nonsingular. It is not instantaneous: the third codeword " 11 " is a prefix of the last one " 110 ". It is, however, uniquely decodable. To decode we look at the first two bits of the sequence. If the first two bits are " 00 " then we decode a B, if they are " 10 " we decode an A. However, for " 11 " we do not know yet if it is a C or a D. To distinguish them we need to count the zeros after the first two " 1 ":

- If the number of zeros is even ($2 k$), then the first two bits are a C (followed by k 's).
- If the number of zeros is odd $(2 k+1)$, then the first two bits are a D (followed by $k B$'s).

The rest of the message can be decoded by repeating this procedure.
(d) The code $\{\mathcal{C}(A)=0, \mathcal{C}(B)=10, \mathcal{C}(C)=110, \mathcal{C}(D)=111\}$ is trivially nonsingular. It is instantaneous because no codeword is a prefix of another one. It is uniquely decodable.

Exercise 2. An instantaneous code satisfies the Kraft inequality:

$$
\sum_{i}^{m} D^{-l_{i}} \leq 1
$$

If $m=6$ and lengths $\left\{l_{i}\right\}=\{1,1,1,2,2,3\}$ the Kraft inequality reads: $3 D^{-1}+2 D^{-2}+D^{-3} \leq 1$. Since D must be a positive integer satisfying inequality we have $D=4$. It can be verified by testing the Kraft inequality for $D=1, D=2, D=3, D=4$, and $D=5$.

This code is not optimal, because there is another one with shorter codewords: $\left\{l_{i}^{\prime}\right\}=\{1,1,1,2,2,2\}$. For instance $\left\{\mathcal{C}\left(x_{1}\right)=0, \mathcal{C}\left(x_{2}\right)=1, \mathcal{C}\left(x_{3}\right)=2, \mathcal{C}\left(x_{4}\right)=30, \mathcal{C}\left(x_{5}\right)=31, \mathcal{C}\left(x_{6}\right)=32\right\}$.

Note that if $D=4$ and the number of codewords is 6 , an optimal code does not saturate the Kraft inequality. However, a binary code does. This can be verified by constructing a tree.

Exercise 3.

(a) For the random variable X with alphabet $\{A, B, C, D\}$ and associated probability of occurrence $\left\{\frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{4}{10}\right\}$, we construct a binary Huffman code:

$$
\begin{aligned}
\left\{A, \frac{1}{10}\left|B, \frac{2}{10}\right| C\left|\frac{3}{10}\right| D, \frac{4}{10}\right\} \Rightarrow A & =0 \\
B & =1 \\
\left\{A B, \frac{3}{10}\left|C, \frac{3}{10}\right| D, \frac{4}{10}\right\} \Rightarrow A B & =0 \\
C & =1 \\
\left\{A B C, \left.\frac{6}{10} \right\rvert\, D, \frac{4}{10}\right\} \Rightarrow A B C & =0 \\
D & =1
\end{aligned}
$$

This gives us the code: $\{\mathcal{C}(A)=000, \mathcal{C}(B)=001, \mathcal{C}(C)=01, \mathcal{C}(D)=1\}$.
(b) Note that if the cardinality of the alphabet $d \geq 3$, it is not always possible to have enough symbols to combine in packets of d. In this case, it is necessary to add additional symbols which appear with probability zero. Since at each iteration the number of symbols is reduced by $d-1$, we should have in total $1+k(d-1)$ symbols, where k is the height of the tree. Let us construct now a ternary Huffman code for X. For $d=3$, we should have an odd number of symbols. If we add the symbol E with probability zero, we get:

$$
\begin{aligned}
\left\{A, \frac{1}{10}\left|B, \frac{2}{10}\right| C, \frac{3}{10}\left|D, \frac{4}{10}\right| E, \frac{0}{10}\right\} \Rightarrow A & =0 \\
B & =1 \\
E & =2 \\
\left\{A B E, \frac{3}{10}\left|C, \frac{3}{10}\right| D, \frac{4}{10}\right\} \Rightarrow A B E & =0 \\
C & =1 \\
D & =2
\end{aligned}
$$

This gives us the code: $\{\mathcal{C}(A)=00, \mathcal{C}(B)=01, \mathcal{C}(C)=1, \mathcal{C}(D)=2\}$.
(c) For the source $\left\{x_{i}, p_{i}\right\}$, a Shannon code has length $l_{i}=\left\lceil\log _{2} \frac{1}{p_{i}}\right\rceil$ for each symbol x_{i} Therefore, $\{l(A)=4, l(B)=3, l(C)=2, l(D)=2\}$. To construct such a code we can use the binary Huffman code constructed before. For example, a possible Shannon code is $\{\mathcal{C}(A)=0000, \mathcal{C}(B)=001, \mathcal{C}(C)=$ $01, \mathcal{C}(D)=11\}$.
The expected length of the Shannon code is $\bar{l}_{S}=2.4$ bits; the expected length of the Huffman code is $\bar{l}_{H}=1.9$ bits.
The bound on the optimal code length gives $H(X)=-\sum_{i=1}^{4} p_{i} \log _{2} p_{i}=1.85$ bits, which verifies the inequality $H(X) \leq \bar{l}_{H} \leq \bar{l}_{S}<H(X)+1$.

Exercise 4.

(a) Let X take the values $\{A, B, C, D\}$ with probabilities $\left\{\frac{1}{3}, \frac{1}{3}, \frac{1}{4}, \frac{1}{12}\right\}$. We construct a binary Huffman code for X :

$$
\begin{aligned}
\left\{A, \frac{1}{3}\left|B, \frac{1}{3}\right| C, \frac{1}{4}|D| \frac{1}{12}\right\} \Rightarrow C & =1 \\
D & =0
\end{aligned}
$$

$$
\begin{aligned}
\left\{A, \frac{1}{3}\left|B, \frac{1}{3}\right| C D, \frac{1}{3}\right\} \Rightarrow B & =1 \\
C D & =0
\end{aligned}
$$

$$
\begin{aligned}
\left\{B C D, \left.\frac{2}{3} \right\rvert\, A, \frac{1}{3}\right\} \Rightarrow B C D & =1 \\
A & =0
\end{aligned}
$$

This gives the code $\{\mathcal{C}(A)=0, \mathcal{C}(B)=11, \mathcal{C}(C)=101, \mathcal{C}(D)=100\}$. Alternatively, by regrouping A and B in the second step, we have the Huffman code $\{\mathcal{C}(A)=11, \mathcal{C}(B)=10, \mathcal{C}(C)=01, \mathcal{C}(D)=00\}$ with the same expected length.
(b) For the Shannon code we obtain $\{l(A)=2, l(B)=2, l(C)=2, l(D)=4\}$. To construct this code we can take the Huffman code above. For example, one possible Shannon codes reads $\{\mathcal{C}(A)=11, \mathcal{C}(B)=10, \mathcal{C}(C)=01, \mathcal{C}(D)=0000\}$.
The expected length of the Shannon code is $\bar{l}_{S}=2.17$ bits; the expected length of the Huffman code is $\bar{l}_{H}=2$ bits.

The bound on the optimal code length gives $H(X)=-\sum_{i=1}^{4} p_{i} \log _{2} p_{i}=1.86$ bits, verifying the inequality $H(X) \leq \bar{l}_{H} \leq \bar{l}_{S}<H(X)+1$. However, the property $\bar{l}_{H} \leq \bar{l}_{S}$ does not imply that the codewords in the Shannon code are all longer than those in the Huffman code (cf. the examples above).

Exercise 5.

(a) Alice flips the coin k times and obtains "head" at the k-th try. The expected length of the naive code reads

$$
\bar{l}_{n}=\sum_{k=1}^{\infty} k p(1-p)^{k-1}=\frac{1}{p}
$$

The entropy of the random variable k is given by

$$
\begin{aligned}
H(k) & =-\sum_{k=1}^{\infty}(1-p)^{k-1} p \log _{2}\left((1-p)^{k-1} p\right) \\
& =-p \log _{2}(1-p) \sum_{k=1}^{\infty}(k-1)(1-p)^{k-1}-p \log _{2} p \sum_{k=1}^{\infty}(1-p)^{k-1} \\
& =-\left[p \log _{2}(1-p)\right] \frac{1-p}{p^{2}}-\left[p \log _{2} p\right] \frac{1}{p} \\
& =-\frac{1}{p}\left(p \log _{2} p+(1-p) \log _{2}(1-p)\right) \\
& =\frac{1}{p} H(p, 1-p)
\end{aligned}
$$

Since $H(p, 1-p) \leq 1$, we have $H(k) \leq \frac{1}{p}=\bar{l}_{n}$.
The naive code is optimal [i.e. $\bar{l}_{n}=H(k)$] if $p=1 / 2$.
(b) In the limit $p \rightarrow 0$ the expected length of the naive code diverges to infinity. The expected length of the Shannon code is approximately the entropy: $\bar{l}_{S} \simeq H(k)$ (remember the inequality $H(k) \leq \bar{l}_{S}<$ $H(k)+1)$. In the limit $p \rightarrow 0$ we obtain

$$
\lim _{p \rightarrow 0} \bar{l}_{S} \simeq \lim _{p \rightarrow 0} H(k) \simeq \lim _{p \rightarrow 0} \frac{H(p, 1-p)}{p} \simeq \lim _{p \rightarrow 0} \log _{2} \frac{1}{p}
$$

which also diverges to infinity, but as a logarithmic of that for naive code: $\bar{l}_{n}=\frac{1}{p} \simeq 2^{\bar{l}_{S}}$. There is an exponential gain with respect to the naive code.

