
INFO-H-451 2015-2016
INFORMATION AND CODING THEORY

Solutions to Exercise Sheet 3
Exercise 1.

(a) The code {C(A) = 0,C(B) = 0} is singular. It is neither uniquely decodable nor instantaneous.

(b) The code {C(A) = 0,C(B) = 010,C(C) = 01,C(D) = 10} is trivially nonsingular. It is not instanta-
neous, because the first codeword “0” is a prefix of the second one “01”. The code is not uniquely
decodable. For example, the sequence 010 can be associated with three distinct codewords B, AD or
CA.

(c) The code {C(A) = 10,C(B) = 00,C(C) = 11,C(D) = 110} is trivially nonsingular. It is not instanta-
neous: the third codeword “11” is a prefix of the last one “110”. It is, however, uniquely decodable.
To decode we look at the first two bits of the sequence. If the first two bits are “00” then we decode
a B, if they are “10” we decode an A. However, for “11” we do not know yet if it is a C or a D. To
distinguish them we need to count the zeros after the first two “1”:

• If the number of zeros is even (2k), then the first two bits are a C (followed by k B’s).

• If the number of zeros is odd (2k+ 1), then the first two bits are a D (followed by k B’s).

The rest of the message can be decoded by repeating this procedure.

(d) The code {C(A) = 0,C(B) = 10,C(C) = 110,C(D) = 111} is trivially nonsingular. It is instantaneous
because no codeword is a prefix of another one. It is uniquely decodable.

Exercise 2. An instantaneous code satisfies the Kraft inequality:
m
∑

i

D−li ≤ 1.

If m = 6 and lengths {li} = {1, 1, 1, 2, 2, 3} the Kraft inequality reads: 3D−1 + 2D−2 + D−3 ≤ 1. Since
D must be a positive integer satisfying inequality we have D = 4. It can be verified by testing the Kraft
inequality for D = 1, D = 2, D = 3, D = 4, and D = 5.

This code is not optimal, because there is another one with shorter codewords: {l ′i} = {1, 1, 1, 2, 2, 2}.
For instance {C(x1) = 0,C(x2) = 1,C(x3) = 2,C(x4) = 30,C(x5) = 31,C(x6) = 32}.

Note that if D = 4 and the number of codewords is 6, an optimal code does not saturate the Kraft
inequality. However, a binary code does. This can be verified by constructing a tree.

Exercise 3.

(a) For the random variable X with alphabet {A, B, C , D} and associated probability of occurrence
{ 1

10 , 2
10 , 3

10 , 4
10}, we construct a binary Huffman code:

§

A,
1

10
| B,

2
10
| C |

3
10
| D,

4
10

ª

⇒ A= 0

B = 1

§

AB,
3
10
| C ,

3
10
| D,

4
10

ª

⇒ AB = 0

C = 1

§

ABC ,
6

10
| D,

4
10

ª

⇒ ABC = 0

D = 1

This gives us the code: {C(A) = 000,C(B) = 001,C(C) = 01,C(D) = 1}.

1

(b) Note that if the cardinality of the alphabet d ≥ 3, it is not always possible to have enough symbols
to combine in packets of d. In this case, it is necessary to add additional symbols which appear
with probability zero. Since at each iteration the number of symbols is reduced by d − 1, we should
have in total 1+ k(d − 1) symbols, where k is the height of the tree. Let us construct now a ternary
Huffman code for X . For d = 3, we should have an odd number of symbols. If we add the symbol E
with probability zero, we get:

§

A,
1
10
| B,

2
10
| C ,

3
10
| D,

4
10
| E,

0
10

ª

⇒ A= 0

B = 1

E = 2

§

ABE,
3

10
| C ,

3
10
| D,

4
10

ª

⇒ ABE = 0

C = 1

D = 2

This gives us the code: {C(A) = 00,C(B) = 01,C(C) = 1,C(D) = 2}.

(c) For the source {x i , pi}, a Shannon code has length li =

log2
1
pi

£

for each symbol x i Therefore,
{l(A) = 4, l(B) = 3, l(C) = 2, l(D) = 2}. To construct such a code we can use the binary Huffman
code constructed before. For example, a possible Shannon code is {C(A) = 0000,C(B) = 001,C(C) =
01,C(D) = 11}.

The expected length of the Shannon code is lS = 2.4 bits; the expected length of the Huffman code
is lH = 1.9 bits.

The bound on the optimal code length gives H(X) = −
∑4

i=1 pi log2 pi = 1.85 bits, which verifies the
inequality H(X)≤ lH ≤ lS < H(X) + 1.

Exercise 4.

(a) Let X take the values {A, B, C , D} with probabilities {1
3 , 1

3 , 1
4 , 1

12}. We construct a binary Huffman
code for X :

§

A,
1
3
| B,

1
3
| C ,

1
4
| D |

1
12

ª

⇒ C = 1

D = 0

§

A,
1
3
| B,

1
3
| C D,

1
3

ª

⇒ B = 1

C D = 0

§

BC D,
2
3
| A,

1
3

ª

⇒ BC D = 1

A= 0

This gives the code {C(A) = 0,C(B) = 11,C(C) = 101,C(D) = 100}. Alternatively, by regrouping A
and B in the second step, we have the Huffman code {C(A) = 11,C(B) = 10,C(C) = 01,C(D) = 00}
with the same expected length.

(b) For the Shannon code we obtain {l(A) = 2, l(B) = 2, l(C) = 2, l(D) = 4}. To construct this
code we can take the Huffman code above. For example, one possible Shannon codes reads
{C(A) = 11,C(B) = 10,C(C) = 01,C(D) = 0000}.

The expected length of the Shannon code is lS = 2.17 bits; the expected length of the Huffman code
is lH = 2 bits.

2

The bound on the optimal code length gives H(X) = −
∑4

i=1 pi log2 pi = 1.86 bits, verifying the
inequality H(X) ≤ lH ≤ lS < H(X) + 1. However, the property lH ≤ lS does not imply that the
codewords in the Shannon code are all longer than those in the Huffman code (cf. the examples
above).

Exercise 5.

(a) Alice flips the coin k times and obtains “head” at the k-th try. The expected length of the naive code
reads

ln =
∞
∑

k=1

kp(1− p)k−1 =
1
p

.

The entropy of the random variable k is given by

H(k) = −
∞
∑

k=1

(1− p)k−1p log2

�

(1− p)k−1p
�

= −p log2(1− p)
∞
∑

k=1

(k− 1)(1− p)k−1 − p log2 p
∞
∑

k=1

(1− p)k−1

= −
�

p log2(1− p)
�1− p

p2
−
�

p log2 p
�1

p

= −
1
p

�

p log2 p+ (1− p) log2(1− p)
�

=
1
p

H(p, 1− p)

Since H(p, 1− p)≤ 1, we have H(k)≤ 1
p = ln.

The naive code is optimal [i.e. ln = H(k)] if p = 1/2.

(b) In the limit p→ 0 the expected length of the naive code diverges to infinity. The expected length of
the Shannon code is approximately the entropy: lS ' H(k) (remember the inequality H(k)≤ lS <

H(k) + 1). In the limit p→ 0 we obtain

lim
p→0

lS ' lim
p→0

H(k)' lim
p→0

H(p, 1− p)
p

' lim
p→0

log2
1
p

,

which also diverges to infinity, but as a logarithmic of that for naive code: ln =
1
p ' 2lS .

There is an exponential gain with respect to the naive code.

3

