
INFO-H-422 2017-2018
INFORMATION AND CODING THEORY

Solutions to Exercise Sheet 4

Exercise 1.

(a) The encoding procedure is given by the table below:

Position Substring Output Encoded Output
1. A (0,A) (00,000)
2. A_ (1,_) (01,011)
3. AB (1,B) (01,001)
4. ABB (3,B) (11,001)
5. ABC (3,C) (11,010)
6. _ (0,_) (00,011)
7. ABA (3,A) (11,000)
8. B (0,B) (00,001)
9. C (0,C) (00,010)
10. . (0,.) (00,100)

Table 1: The Lempel-Ziv encoding/decoding table.

The alphabet of the source reads A = {A,B,C, _}. To encode the position, 2 bits are sufficient.
Furthermore, 3 bits are needed to encode the alphabet (taking into account the extra “.” signifying
end of the string). Therefore, 5 bits are needed per substring, which gives a total of 50 bits. In a
naive way we need 3 bits to encode each symbol of our alphabet {A,B,C, _, .} which includes now
the final dot and we have 18 symbols in our sequence to encode. Finally, it requires 3× 18 = 54 bits
to send the sequence.

The elements A,B and C of the last ABC appear in different substrings in the first example. For the
second example, the last ABC is an existing element of a dictionary.

(b) The encoding procedure is given by the table below:

Position Substring Output Encoded Output
1. A (0,A) (000,00)
2. B (0,B) (000,01)
3. AA (1,A) (001,00)
4. AAA (3,A) (011,00)
5. AAAA (4,A) (100,00)
6. AAAAA (5,A) (101,00)
7. BB (2,B) (010,01)
8. . (0,.) (000,11)

Table 2: The Lempel-Ziv encoding/decoding table.

The alphabet of the source reads A= {A,B}.
Lempel-Ziv: 5 ∗ 8= 40 bits
Naive encoding: 2 ∗ 19= 38 bits

1

(c) The encoding procedure is given by the table below:

Position Substring Output Encoded Output
1. A (0,A) (000,00)
2. B (0,B) (000,01)
3. AA (1,A) (001,00)
4. AAA (3,A) (011,00)
5. AAAA (4,A) (100,00)
6. AAAAA (5,A) (101,00)
7. AAAAAA (6,A) (110,00)
8. . (0,.) (000,11)

Table 3: The Lempel-Ziv encoding/decoding table.

The alphabet of the source reads A= {A,B}.
Lempel-Ziv: 5 ∗ 8= 40 bits
Naive encoding: 2 ∗ 23= 46 bits

(d) The original sequence is: AABABC_ ABBBBBBBB.

Exercise 2.

(a) The optimal method of asking questions can be found by considering the Huffman code applied to
the source X1X2...Xn.

In order to apply this code one needs to define a new random variable Y which has an alphabet that
contains all outcomes of the sequence X1X2...Xn That is,

Y = { 111...111
︸ ︷︷ ︸

“All objects are faulty”

, 111...110
︸ ︷︷ ︸

“The first n− 1 objects are faulty, the last one is not”

,

111...100
︸ ︷︷ ︸

“The first n− 2 objects are faulty, the last two are not”

,

111...101
︸ ︷︷ ︸

“The first n− 2 objects and the last one are faulty, the (n− 1)th object is not faulty”

,

..., 000...000
︸ ︷︷ ︸

“No object is faulty.”

}.

In total there are 2n possible sequences and we allocate to them the following probability distribution

q(y) = {p1p2p3 · · · pn, p1p2p3 · · · pn−2pn−1(1− pn),

p1p2p3 · · · pn−2(1− pn−1)(1− pn),

p1p2p3 · · · pn−2(1− pn−1)pn,

..., (1− p1)(1− p2) · · · (1− pn)}.

For given p1, p2 etc., we construct the priority queue of Y using the probabilities q(y) and then
construct the Huffman code.

(b) The longest sequence in the set of questions is associated with the least probable case. Since pi >
1
2

the least probable case is when no object is faulty. The second least probable case is when only the
last object is faulty [since (1− pi−1)pi < pi−1(1− pi)]. These two cases are the leaves of the longest
paths in the Huffman tree. The last question is thus: “Is the last object faulty?”.

2

Exercise 3. We know that Bob uses the optimal code. We also know that he needs to ask 35 questions
on average to identify the object. Each binary answer (YES/NO) gives him one bit of information. This
implies the following inequality which is valid for an optimal code

H(X)≤ 35< H(X) + 1

⇒ 34< H(X).

For a fixed number of objects, the distribution of objects of Alice which gives the highest entropy is
the uniform distribution. Conversely, if the entropy is fixed than the uniform distribution minimizes
the number of objects. The uniform distribution offers a possibility to calculate a lower bound on the
number of objects:

34< log2 m.

We conclude that there are at least 234 ' 1.7× 1010 objects in the set.

Exercise 4.

(a) The probability distribution that maximizes the Shannon entropy is the one where all possible
elements have the same probability to occur. There are n+ 1 possible elements: n where one of the
coins is counterfeit and one element taking into account the possibility that no coin is counterfeit.
The probability distribution of this case is pi =

1
n+1 , and the Shannon entropy is H(X) = log2(n+ 1)

bits.

(b) With the optimal code, one needs on average k weighings with k such that

H(X)≤ k < H(X) + 1.

For the case of maximal entropy, we have

log2(n+ 1)≤ k < log2(n+ 1) + 1.

(c) With the help of (b) one deduces that n+ 1≤ 2k < 2(n+ 1), thus, n≤ 2k − 1.

(d) The probability distribution attains the bound, if n = 2k−1 and thus pi =
1
2k (probability distribution

which is 2-adic).

Weighing Max. coins
1 1
2 3
3 7
4 15

The bound is attained if one has a number of coins equal to 1,3, 7,15,

Exercise 5.

(a) We are given L −H5(X) = 0

L −H5(X) =
m
∑

i=1

pi li +
m
∑

i=1

pi log5 pi = 0,

but li = − log5 5−li , so we can rewrite

L −H5(X) = −
m
∑

i=1

pi log5 5−li +
m
∑

i=1

pi log5 pi = 0.

3

Defining ri =
5−li
∑

j 5−l j
and R=
∑

i 5−li , we have

−
∑

i

pi log5 (ri ·
∑

j

5−l j) +
m
∑

i=1

pi log5 pi = 0,

−
∑

i

pi log5 ri − log5

∑

j

5−l j +
m
∑

i=1

pi log5 pi = 0,

which can be simplified into

L −H5(X) =
∑

i

pi log5
pi

ri
− log5 R= 0.

The Kraft inequality tells us that R≤ 1. Also note that ri is a probability distribution, since ri ≥ 0
and
∑

i ri = 1. So we can rewrite the previous expression using the definition of the relative entropy
D(x ||y):

L −H5(X) = D(p||r) + log5
1
R
= 0.

We know that D(p||r)≥ 0 and log5
1
R ≥ 0 since R≤ 1. The non-negativity of the inequalities implies

R= 1 and pi = ri = 5−li .

(b) Since L = H5(X) we know that the 5-adic code is optimal. Thus, we can construct it using the
Huffman code. For each step of this encoding one groups 5 elements into one, thus the number of
elements is decreased by 4 at each step. If at the beginning one had m elements, at the end of the
encoding, i.e. after k steps, only one element remains (m− 4k = 1). Thus, m= 4k+ 1.

4

