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Solutions to Exercise Sheet 6

Exercise 1. First note that the codewords of a linear code C form a closed linear subspace, hence the
sum (modulo 2) and the difference (modulo 2) of two codewords are also codewords of the code:

∀i, j, i 6= j,∃l, m : wi +w j =wl ,wi −w j =wm ∈ C . (1)

The minimum Hamming distance is by definition

d =min
i, j

d(wi ,w j), (2)

where d(a,b) is the Hamming distance between a and b. By using the linearity (1) and the definition of
the Hamming distance we can rewrite (2) as

d =min
i, j

d(wi ,w j) =min
i, j

d(wi −w j , 0) =min
k

d(wk, 0). (3)

Hence the minimum Hamming distance of the code is equal to the minimum Hamming distance between
any codeword and the word 0 and the latter is the definition of the minimum weight of the code.

Then note that the conditions of the exercise correspond to the definition of the minimum weight.
Hence the statement of the exercise is equivalent to : "the minimum Hamming distance of a code is
equal to d if and only if its minimal weight is d". The last statement is true because we have proven
above the equality of the minimum distance and the minimum weight of the code.

Exercise 2. Suppose w is a codeword, then from the definition of the parity matrix H, we have

Hw= 0. (4)

Vector w is a column vector with binary entries, we can rewrite the matrix product (4) as
∑

i

Hi ·wi = 0, (5)

where Hi denotes the i-th column of H and wi is the i-th entry of w.
Since the code corrects up to e−1 errors and detects up to e errors, the minimum weight of the code

is d = 2e, which means that there exists a codeword wd such that the number of nonzero entries in wd
is 2e. From (5), we can deduce that for wd , there are 2e columns in H (corresponding to the nonzero
entries of wd) which are linearly dependent. As 2e is the minimum weight (therefore also the minimum
number of linearly dependent columns), all sets of 2e− 1 columns must be linearly independent. And
conversely, if all sets of 2e− 1 columns of H are linearly independent then the minimal weight of the
code is at least 2e. Then the code can detect up to e errors and correct e− 1 errors.

Exercise 3.

(a) The size of the matrix is given by n = 6 and m = 4. n corresponds to the size of the codewords. The
rank of H is equal to m= 4 and corresponds to the number of parity bits. We define a codeword
vector w of components wi , i = 1,2, ..., n. The condition Hw = 0 can be written in terms of the
system of equations:











w1 +w5 +w6 = 0
w1 +w2 +w6 = 0
w2 +w3 +w6 = 0
w1 +w4 +w6 = 0.
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By expressing w1 from the first equation and inserting it into the second and the fourth ones we
obtain











w1 = w5 +w6
w5 = w2
w2 +w3 +w6 = 0
w5 = w4.

Then we express w2 from second and first equations and inserting it into the third one obtain











w1 = w5 +w6
w5 = w2
w1 = w3
w5 = w4.

We have 4 equations and 6 unknown variables therefore, we can choose arbitrary two of them and
obtain a solution. By choosing all four possible combinations for the pair of {w1, w2} and inserting
them into the last system of equations we find the following solutions:

w=















1
0
1
0
0
1















,















1
1
1
1
1
0















,















0
1
0
1
1
1















,















0
0
0
0
0
0















It is easy to see that the minimum distance between the codewords is 3, therefore this code can
correct one error.

(b) To correct one error and detect two, the minimum Hamming distance has to be d = 4. This
corresponds to having 3 linearly independent columns in H (see Exercise 2). In particular, the last
column of H can neither be equal to another column of H nor to a linear combination of any two
columns. There are 5 columns and the number of possible different linear combinations of two
of them is 5·(5−1)

2 = 10. Remember that the column with all zeros is also forbidden, so this gives
us 5+ 10+ 1 = 16 different forbidden columns. Because the entries hi,6 are bits, only 24 = 16
different combinations are possible, and they are all excluded by the argument above. Therefore the
Hamming distance d can not be 4.

Exercise 4.

(a) The first 3 columns of G1 are linearly independent and correspond to k = 3 bits of information, while
the last two columns correspond to m= 2 parity bits. There are 2k = 8 codewords. The Hamming
matrix has 2 rows (number of parity bits) and 5 columns (lengths of the codewords) and contains at
least two linearly independent columns. H can be found by solving the equation Hw= 0. We can
try a solution of the form:

�

h1,1 h1,2 h1,3 1 0
h2,1 h2,2 h2,3 0 1

�

Multiplying each row in H by the thee codewords from G1 we get three equations for the three
coefficients of each row of H which allow us to find:

�

1 1 1 1 0
0 1 1 0 1

�

By calculating all combinations of the three codes words from G1 we get w4 =w1+w2, w5 =w1+w3,
w6 =w2 +w3, w7 =w1 +w2 +w3 and by adding w8 = (0,0,0,0,0) we obtain all the codewords
(note that here indexes enumerate the code words and not the elements of a codeword). We can
check that all codewords have at least two bits and therefore, the minimum distance of the code is
d = 2. Hence, this code detects single errors without correcting them.
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(b) In this case, n= 4 and k = 1. The number of codewords is 2k = 2 and the number of parity bits is
m= n− k = 3. Therefore we can write 3 (last) columns of H as the identity matrix while keeping
the first column unknown. By inserting the codeword w= (1, 1, 1, 1) into equation Hw= 0 we find
easily :





1 1 0 0
1 0 1 0
1 0 0 1





The code has only two codewords:

w=







0
0
0
0






,







1
1
1
1







The Hamming distance is d = 4. This is a repetition code which corrects single errors and detects
two errors.

Remark: The transmission rate is given by R = k/n. We observe that RG1
= 3/5, but it does not

permit to correct any error (can only detect single errors). In contrary RG2
= 1/4 however it can

correct single errors and detect double errors. There is a trade off between the transmission rate
and the ability of the code to correct errors.
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