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Quantum Mechanics II

Exercise 1: Density matrix – Solutions

1. Take a mixed state ρ̂ =
∑

k pk|ψk〉〈ψk|. Prove that

a) ρ̂ is hermitian (this means ρ̂† = ρ̂).

Solution: Indeed, we have

ρ̂† = (
∑

k pk|ψk〉〈ψk|)
† =

∑
k pk (|ψk〉〈ψk|)† =

∑
k pk|ψk〉〈ψk| = ρ̂.

b) Tr ρ̂ = 1.

Solution: Using the linearity of trace we have

Tr [ρ̂] = Tr

[∑
k

pk|ψk〉〈ψk|

]
=
∑
k

pkTr [|ψk〉〈ψk|] =
∑
k

pk = 1,

where we have used that for each projector Tr [|ψk〉〈ψk|] = 1.

c) ρ̂ ≥ 0 (this means ∀|φ〉 from the Hilbert space we have 〈φ|ρ̂|φ〉 ≥ 0).

Solution: For arbitrary state |φ〉 we have

〈φ|ρ̂|φ〉 =
∑
k

pk〈φ|ψk〉〈ψk|φ〉 =
∑
k

pk|〈φ|ψk〉|2 ≥ 0,

because all the terms in the sum are non-negative: ∀k: |〈φ|ψk〉|2 ≥ 0 and pk ≥ 0.

d) 1− ρ̂ ≥ 0. Solution: Let us choose a basis {|n〉}, then

〈φ|(1−ρ̂)|φ〉 = 〈φ|1|φ〉−
∑
k

pk〈φ|ψk〉〈ψk|φ〉 = 1−
∑
k

pk|〈φ|ψk〉|2 ≥ 1−
∑
k

pk = 1−1 = 0,

where the inequality is due to the fact that ∀k: |〈φ|ψk〉|2 ≤ 1.

How can we interpret the eigenvalues of ρ̂?
Solution: Properties (a) - (d) of ρ̂ imply that its eigenvalues ρn (in full generality they

are not pk !!!) are real and have the following properties

1. ∀n : 0 ≤ ρn ≤ 1,

2.
∑

n ρn = 1.

Therefore ρn may be interpreted as probabilities.
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2. Demonstrate (prove) that Tr ρ̂2 ≤ 1. When does the equality Tr ρ̂2 = 1 hold?

Solution:

〈φ|ρ̂|φ〉 =
∑
k

pk〈φ|ψk〉〈ψk|φ〉 =
∑
k

pk|〈φ|ψk〉|2 ≤
∑
k

pk = 1,

where inequality is due to the fact that ∀k: |〈φ|ψk〉|2 ≤ 1.
It is easy to see that when there is only one term in the mixture ρ̂ = |ψ〉〈ψ| we have

Tr ρ̂2 = 1. This corresponds to a pure state.

3. Knowing that the evolution of ρ(t) obeys Liouville’s equation

i~
d

dt
ρ̂(t) = [Ĥ, ρ̂(t)], (1)

show that it the initial state ρ(0) is pure, it stays pure for all t.

Solution: Using Liouville’s equation consider time derivative

d

dt

(
Tr
[
ρ̂2
])

= Tr

[(
d

dt
ρ̂

)
ρ̂+ ρ

(
d

dt
ρ̂

)]
=

1

i~
Tr [([H, ρ̂]ρ̂+ ρ̂[H, ρ̂])]

=
1

i~
Tr
[
Ĥρ̂ρ̂− ρ̂Ĥρ̂+ ρ̂Ĥρ̂− ρ̂ρ̂Ĥ

]
=

1

i~
Tr
[(

(Ĥρ̂ρ̂− ρ̂ρ̂Ĥ
)]

=
1

i~
Tr
[(

(Ĥρ̂ρ̂− Ĥρ̂ρ̂
)]

= 0,

where at the last step we used the invariance of trace under cyclic permutations. Thus
the considered time derivative is zero for all states. This means that the value Tr [ρ̂2] = 1
(for initial pure state) is not changed in the course of evolution. Hence initially pure
states stay pure for all t.

Another solution uses the fact that Liouville’s equation was deduced from the time
evolution of pure states given by the Schrödinger equation. Initial pure state may be
written as ρ̂(0) = |ψ(0)〉〈ψ(0)|. Then the time evolution leads to ρ̂(t) = Û(t)ρ̂(0)Û(t)†

where {Û(t)} is a family of unitary operators (Û †(t) = Û−1(t)) parametrized by t and
determined by the Schrödinger equation so that |ψ(t)〉 = Û(t)|ψ(0)〉. Then our state ρ̂(t)
is pure at any time, because it can always be expressed in the form of projector:

ρ̂(t) = Û(t)|ψ(0)〉〈ψ(0)|Û †(t) = |ψ(t)〉〈ψ(t)|.

NB: The first proof is conceptually more useful, because the value of Tr [ρ̂2] may be
considered as a measure of the degree of “purity” for quantum states. As we have seen in
question 2, the maximum value “1” corresponds to pure states. One can show that the
minimum value is 1/d where d is the dimension of the Hilbert space. The minimum value
is achieved by maximally mixed state ρmm = I/d, where I =

∑d
k=1 |k〉〈k| is the identity

operator and vectors |k〉 form an orthonormal basis. One can conclude that the unitary
evolution preserves the (degree of) purity of quantum states.
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4. Prove Ehrenfest’s theorem using the evolution of ρ̂(t) which is given by Eq. (1).
Solution: Consider the time derivative of the expectation value of observable Â:

d

dt
〈Â〉 =

d

dt

(
Tr
[
Âρ̂
])

= Tr

[(
d

dt
Â

)
ρ̂+ Â

(
d

dt
ρ̂

)]
=

〈
d

dt
Â

〉
+

1

i~
Tr
[
Â[Ĥ, ρ̂]

]
=

〈
d

dt
Â

〉
+

1

i~
Tr
[
ÂĤρ̂− Âρ̂Ĥ

]
=

〈
d

dt
Â

〉
+

1

i~
Tr
[
ÂĤρ̂− ĤÂρ̂

]
=

〈
d

dt
Â

〉
+

1

i~
Tr
[
[Â, Ĥ]ρ̂

]
=

〈
d

dt
Â

〉
+

1

i~

〈
[Â, Ĥ]

〉
.

5. In two-dimensional Hilbert space with orthonormal basis {|a〉, |b〉}, is it possible to
distinguish by measurements the preparations of quantum states defined below?

a) Superposition of two basis states |a〉 and |b〉 given by corresponding amplitudes α
and β. The density matrix of the state ρ̂ψ = |ψ〉〈ψ| where |ψ〉 = α|a〉+ β|b〉 is(

|α|2 αβ∗

α∗β |β|2
)
.

b) Statistical mixture of basis states |a〉 and |b〉 taken with weights |α|2 and |β|2
correspondingly. The density matrix of the mixture ρ̂ab = |α|2|a〉〈a|+ |β|2|b〉〈b| is

|α|2
(

1 0
0 0

)
+ |β|2

(
0 0
0 1

)
=

(
|α|2 0

0 |β|2
)
.

c) Equally weighted mixture of pure states |ψ〉 and |φ〉 where state |ψ〉 is the same as
in item a) and state |φ〉 is given by the amplitudes α and −β. The density matrix
of the mixture ρ̂ψφ = 1

2
|ψ〉〈ψ|+ 1

2
|φ〉〈φ| where |φ〉 = α|a〉 − β|b〉 is

1

2

(
|α|2 αβ∗

α∗β |β|2
)

+
1

2

(
|α|2 −αβ∗
−α∗β |β|2

)
=

(
|α|2 0

0 |β|2
)
.

The density matrices of all tree states in the basis {|a〉, |b〉} have the same diagonal
elements and therefore cannot be distinguished by measurement of any observable, which
is diagonal in this basis. Moreover, the density matrixes of states ρ̂ab and ρ̂ψφ are equal.
Note that equal matrices are equal in any basis, therefore no measurement in any basis
can distinguish the two preparations.

The density matrix of state ρ̂ψ is different. It is diagonal in the basis {|ψ〉, |ψ⊥〉}:(
1 0
0 0

)
where it has only one nonzero element. If the system being in state ρ̂ψ is measured in
the basis {|φ〉, |ψ⊥〉} no measurement outcome can correspond to the orthogonal state
|ψ⊥〉. This is not the case for states ρ̂ψ and ρ̂ψφ which have both diagonal elements grater
than nonzero in any basis, because they are mixed states and the measurement outcome
corresponding to state |φ⊥〉 is possible. Thus state ρ̂ψ can be distinguished from the other
two.
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