\documentclass[a4paper,12pt]{article} \usepackage{epic} \usepackage{graphicx} \usepackage{float} \setlength {\unitlength}{1mm} \setlength {\headheight}{0 cm} \setlength {\headsep}{ 0 cm} \setlength {\oddsidemargin}{-0.16 in} \setlength {\topmargin}{-0.45 cm} \setlength {\textwidth}{16.5 cm} \setlength {\textheight}{24.0 cm} \renewcommand {\baselinestretch}{1.1} %\pagestyle{empty} \begin {document} \noindent \begin{center} \'{E}cole polytechnique de Bruxelles \hfill PHYSH401/2019-2020 \\[1cm] {\Large Quantum Mechanics II \\[0.3cm] {\large Exercise 2: Wigner Representation}} \\ \vspace{5 mm} \textrm{2 October 2019} \date{2 October 2019} \end{center} %\end{document} Wigner representation of quantum states is equivalent to the one by density operators. \begin{enumerate} \item The Wigner function for a system in the state $\hat\rho$ is defined in the \emph{phase space} $(x,p)$ as \[ W(x,p) = \frac{1}{2\pi \hbar}\int_{-\infty}^\infty e^{ipy/\hbar}\langle x-y/2|\hat\rho|x+y/2\rangle\, dy. \] %% where kets $|x\rangle$ are the eigenstates of the position operator: \[ \hat x |x\rangle = x |x\rangle. \] \begin{itemize} \item[a)] Using the identity \[\frac{1}{2\pi}\int_{-\infty}^\infty e^{ip(x-a)} \, dp = \delta(x-a) \] show that the integral of the Wigner function over $p$ is the probability density for $x$ and \emph{vice versa}. \item[b)] Verify that the expectation value of the kinetic energy operator $\hat T = \hat p ^2/2m$ is given by \[ \langle \hat T \rangle = \int_{-\infty}^\infty\int_{-\infty}^\infty T(p) W(x,p) \, dx \, dp, \] where $T (p)$ is a function of $p$. %Verify that the expectation values of the position and momentum operators are given by %\begin{eqnarray*} %\langle \hat x \rangle & = & \int_{-\infty}^\infty\int_{-\infty}^\infty x\, W(x,p) \, dx\, dp ,\\ %\langle \hat p \rangle & = & \int_{-\infty}^\infty\int_{-\infty}^\infty p\, W(x,p) \, dx\, dp. %\end{eqnarray*} \item[c)] Verify that the expectation value of the potential energy operator $\hat U = U(\hat x)$ is given by \[ \langle \hat U \rangle = \int_{-\infty}^\infty\int_{-\infty}^\infty U(x) W(x,p) \, dx \, dp . \] \end{itemize} %Utiliser la propri\'et\'e pr\'ec\'edente pour prouver que $S_{\pm} |\psi \rangle$ est un \'etat propre de $P_{21}$ avec valeur propre $\pm 1$. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \item Quantum superposition and mixture of two Gaussian states. Use here $\hbar=1$. Let two (non-normalized) Gaussian states be given by the wave functions: \begin{eqnarray*} \psi_1(x) & = & \exp \left[-(x-5)^2\right], \\ \psi_2(x) & = & \exp \left[-(x+5)^2\right]. \end{eqnarray*} \begin{itemize} \item[a)] Find (up to a constant) the Wigner function of equiprobable statistical mixture of the two states. \item[b)] Find (up to a constant) the Wigner function of the superposition of the two states given by equal amplitudes. \item[c)] Compare the two Wigner functions. In which case does the Wigner function show non-classical features of the state? %Why is the Wigner function called \emph{quasi probability} distribution? \end{itemize} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \item \emph{Coherent state} is an eigenstate of the annihilation operator. Use here $\hbar=1$. \[ \hat a |\alpha\rangle =\alpha |\alpha\rangle , \qquad \mathrm{where} \quad \hat a = (\hat x + i \hat p)/\sqrt{2}. \] The (complex) eigenvalue $\alpha$ is related to the phase space variables $x$ et $p$ as \begin{eqnarray*} x & = & \sqrt{2}\,\mathrm{Re}{(\alpha)},\\ p & = & \sqrt{2}\,\mathrm{Im}{(\alpha)}. \end{eqnarray*} \begin{itemize} \item[a)] Find the average number of particles in the coherent state. \item[b)] Find the representation of the coherent state in the eigenbasis of the number operator. What gives this representation for the coherent state with $\alpha=0$? \item[c*)] Find up to a normalization constant the wave function of the coherent state in $x$-representation $\varphi_\alpha(x)=\langle x|\alpha\rangle$ using the representation of the annihilation operator in terms of the position and momentum as given above. Remember that in the position representation we have \begin{eqnarray*} \hat x & = & \int_{-\infty}^\infty x |x\rangle\langle x|\, dx \\ [2ex] \hat p & = & -i \int_{-\infty}^\infty \frac{d}{dx} |x\rangle\langle x|\, dx . \end{eqnarray*} \item[d*)] Find the Wigner function of the coherent state using its wave function in the form \[ \varphi_\alpha(x)= \frac{1}{\sqrt[4]{\pi}}e^{ -\frac{1}{2}(x-x_0)^2+ip_0x }=\frac{1}{\sqrt[4]{\pi}}e^{-\frac{1}{2}p_0^2}e^{ip_0x_0}e^{ -\frac{1}{2}(x-x_0-ip_0)^2} . \] What is the shape of this Wigner function in the phase space? \end{itemize} \end{enumerate} \newpage \section*{Reminder} Integrals of Gaussian functions \begin{eqnarray*} \int_{-\infty}^{+\infty}e^{-a(x+b)^2}dx & = & \sqrt{\frac{\pi}{a}}\, ,\\[2ex] \int_{-\infty}^{+\infty}e^{-ax^2+bx+c}dx & = & \sqrt{\frac{\pi}{a}}e^{\frac{b^2}{4a}+c}\, . \end{eqnarray*} \noindent Example \makebox[1\textwidth]{ \parbox[b]{0.7\textwidth}{ Wigner's quasiprobability distributions for Fock states : \begin{enumerate} \item [a)] $|0\rangle$ \item[] \item[] \item [b)] $|1\rangle$ \item[] \item[] \item [c)] $|5\rangle$. \item[] \end{enumerate} } \hspace{0.5cm} \includegraphics[width=0.25\textwidth]{Wigner_functions.jpg} } \end{document}