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Quantum Mechanics II

Exercise 4: Wigner Representation

Wigner representation of quantum states is equivalent to the one by density operators.

1. The Wigner function for a system in the state ρ̂ defined in the phase space (x, p) is

given by

W (x, p) =
1

2π~

∫ ∞
−∞

eipy/~〈x− y/2|ρ̂|x+ y/2〉 dy.

a) Using the identity
1

2π

∫ ∞
−∞

eip(x−a) dp = δ(x− a)

show that the integral of the Wigner function over p is a probability distribution

for x and vise versa.

Solution:∫ ∞
−∞

W (x, p)dp =
1

2π~

∫ ∞
−∞

dp

∫ ∞
−∞

eipy/~〈x− y/2|ρ̂|x+ y/2〉 dy

=
1

2π~

∫ ∞
−∞
〈x− y/2|ρ̂|x+ y/2〉 dy

∫ ∞
−∞

eipy/~dp︸ ︷︷ ︸
2π~δ(y)

=

∫ ∞
−∞
〈x− y/2|ρ̂|x+ y/2〉 dy 1

2π~
2π~δ(y)

= 〈x|ρ̂|x〉 = ρ(x, x),

which are “diagonal elements” of the density matrix of ρ̂ in x - representation.

The diagonal elements are interpreted as a probability distribution ρ(x). We can

also verify that 〈x|ρ̂|x〉 ≥ 0 due to hermiticity of ρ̂ and∫ ∞
−∞

∫ ∞
−∞

W (x, p) dp dx =

∫ ∞
−∞

ρ(x, x)dx = Tr ρ̂ = 1,

which verify the requirements to a probability distribution.

∫ ∞
−∞

W (x, p)dx =
1

2π~

∫ ∞
−∞

dx

∫ ∞
−∞

eipy/~〈x− y/2|ρ̂|x+ y/2〉 dy

=
1

2π~

∫ ∞
−∞

dy eipy/~
∫ ∞
−∞

dx

∫ ∞
−∞

∫ ∞
−∞

dp′ dp′′ 〈x− y/2|p′〉〈p′|ρ̂|p′′〉〈p′′|x+ y/2〉

=
1

2π~

∫ ∞
−∞

dy eipy/~
∫ ∞
−∞

dx

∫ ∞
−∞

∫ ∞
−∞

dp′ dp′′
eip

′(x−y/2)/~
√

2π~
〈p′|ρ̂|p′′〉e

−ip′′(x+y/2)/~
√

2π~
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=
1

2π~

∫ ∞
−∞

dy eipy/~
∫ ∞
−∞

∫ ∞
−∞

dp′ dp′′ 〈p′|ρ̂|p′′〉e−i(p′+p′′)y/(2~)
∫ ∞
−∞

eix(p
′−p′′)/~dx︸ ︷︷ ︸

2π~δ(p′−p′′)

=
1

2π~

∫ ∞
−∞

dy eipy/~
∫ ∞
−∞

dp′ 〈p′|ρ̂|p′〉e−i(p′+p′)′y/(2~)

=
1

2π~

∫ ∞
−∞

dp′ 〈p′|ρ̂|p′〉
∫ ∞
−∞

dy ei(p−p
′)y/~︸ ︷︷ ︸

2π~δ(p−p′)

= 〈p|ρ̂|p〉 = ρ(p, p)�

b) Verify that the expectation value of the kinetic energy operator T̂ = p̂2/(2m) is

given by

〈T̂ 〉 =

∫ ∞
−∞

∫ ∞
−∞

T (p)W (x, p) dx dp,

where T (p) is a function of p.

Solution: We have in full generality

〈T̂ 〉 = Tr

[
p̂2

2m
ρ̂

]
= Tr

[∫ ∞
−∞

dp |p〉 p
2

2m
〈p|ρ̂

]
=

∫ ∞
−∞

dp
p2

2m
〈p|ρ̂|p〉 =

∫ ∞
−∞

p2

2m
ρ(p, p)dp.

Using the result of the previous question we can express the diagonal element

ρ(x, x) in terms of the integral of the Wigner function of ρ and obtain the desired

equality

〈T̂ 〉 =

∫ ∞
−∞

p2

2m

∫ ∞
−∞

W (x, p)dx dp =

∫ ∞
−∞

∫ ∞
−∞

T (p)W (x, p)dx dp,

where T (p) = p2/(2m).

c) Verify that the expectation value of operator of potential energy Û = U(x̂) is

given by

〈Û〉 =

∫ ∞
−∞

∫ ∞
−∞

U(x)W (x, p) dx dp.

The solution follows the lines of the solution for question 1b)

2. Quantum superposition and mixture of two Gaussian states. Use here ~ = 1.

Let two (non-normalized) Gaussian states are given by the wave functions:

ψ1(x) = exp
[
−(x− 5)2

]
,

ψ2(x) = exp
[
−(x+ 5)2

]
.

a) Find up to a constant the Wigner function of an equiprobable statistical mixture

of the two states.

Solution: The wave functions ψ1(x) and ψ2(x) define pure states |ψ1〉 and |ψ2〉
represented also by the density operators ρ1 = |ψ1〉〈ψ1| and ρ2 = |ψ2〉〈ψ2|.
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The equiprobable statistical mixture of these states is ρ̂1+2 = 1
2
ρ̂1+ 1

2
ρ̂2. By linear-

ity of the matrix element and the integral in the definition of the Wigner function

the statistical mixture results in the same linear combination of corresponding

Wigner functions

W1+2(x, p) =
1

2
(W1(x, p) +W2(x, p)).

Let us find first the Wigner function of the first state.

W1(x, p) =
1

2π

∫ ∞
−∞
〈x− y/2|ρ̂1|x+ y/2〉 eipy dy

=
1

2π

∫ ∞
−∞
〈x− y/2|ψ1〉〈ψ1|x+ y/2〉 eipy dy

=

∫ ∞
−∞

C1ψ1(x− y/2)ψ∗1(x+ y/2) eipy dy

= C1

∫ ∞
−∞

e−(x−5−y/2)
2

e−(x−5+y/2)
2

eipy dy

= C1

∫ ∞
−∞

e−2(x−5)
2−y2/2+ipy dy

= C1

∫ ∞
−∞

e−
1
2
(y2−2ipy+4(x−5)2) dy

= C1

∫ ∞
−∞

e−
1
2
(y2−2ipy−p2+p2+4(x−5)2) dy

= C1

∫ ∞
−∞

e−
1
2
(y−ip)2 + e−

1
2
(4(x−5)2+p2) dy

= C1Cinte
− 1

2
(4(x−5)2+p2),

where C1 is the square of the normalization constant of ψ1(x) and Cint is the value

of the integral over y, which does not depend neither on x nor on p. This Wigner

function has a Gaussian shape.

By inspecting our calculations of W1(x, p) we can easy conclude that W2(x, p) can

be obtained by the same formulae if we replace x − 5 by x + 5 and C1 by C2,

which is the square of the normalization constant of ψ2(x). In addition, looking

at functions ψ1(x) and ψ2(x) we can see that they differ only by a shift of the

x argument, therefore both normalization constants are the same C1 = C2 = C,

because the normalization here implies integration with infinite limits. Then

W1+2 =
CCint

2

(
e−

1
2
(4(x−5)2+p2) + e−

1
2
(4(x+5)2+p2)

)
.

b) Find (up to a constant) the Wigner function of the superposition of the two states

given by equal amplitudes.

Solution: The superposition ψ12 = 1√
2
|ψ1〉 + 1√

2
|ψ2〉 is equivalently given by the

density operator

ρ̂12 = |ψ12〉〈ψ12|.
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Then

W12(x, p) =
1

2π

∫ ∞
−∞
〈x− y/2|ρ̂12|x+ y/2〉 eipy dy

=
1

2π

∫ ∞
−∞
〈x− y/2|ψ12〉〈ψ12|x+ y/2〉 eipy dy

=
C

2

∫ ∞
−∞

(
(ψ1(x− y/2)ψ∗1(x+ y/2) + ψ2(x− y/2)ψ∗2(x+ y/2)

+ ψ1(x− y/2)ψ∗2(x+ y/2) + ψ2(x− y/2)ψ∗1(x+ y/2)
)
eipy dy

=
1

2
(W1(x, y) +W2(x, y))

+
C

2

∫ ∞
−∞

(
e−(x−5−y/2)

2

e−(x+5+y/2)2 + e−(x+5−y/2)2e−(x−5+y/2)
2
)
eipy dy.

Already here we observe that the Wigner function of the superposition differs

from the Wigner function of the mixture by two cross terms, which are not the

Wigner functions themselves. Let us start with the first of the cross terms.

C

2

∫ ∞
−∞

e−(x−5−y/2)
2

e−(x+5+y/2)2 eipy dy

=
C

2

∫ ∞
−∞

e−2(x
2+(5+y/2)2) eipy dy, 5 + y/2 = y′

=
C

2
e−2x

2

∫ ∞
−∞

e−2y
′2+ip(2y′−10) dy

=
C

2
e−2x

2

e−10ip
∫ ∞
−∞

e−2(y
′2−ipy′+(ip/2)2−(ip/2)2) dy′

=
C

2
e−2x

2+2(ip/2)2e−10ip
∫ ∞
−∞

e−
1
2
(y′−ip/2)2 dy′

=
C Cint

2
e−

1
2
(4x2+p2)e−10ip.

Note that here Cint is the same as in question 2 a) because the integrands are

given by the functions which differ only by the shift of the argument.

The calculation of the second cross term is follows the same lines. The only

difference comes from replacement 5 → −5 in the first line, which implies the

change of the variable of integration y′ = y/2 − 5 in the second line. Then, in

third line, the only change is in the factor (2y′−10), which is replaced by (2y′+10).

The only effect of this in the fourth line is complex conjugation of e−10ip, while

the integral is left unchanged. The final result is the same as for the first cross

term up to the complex conjugation.

Summing up all four terms we obtain

W12(x, p) =
1

2
CCint

(
e−

1
2
(4(x−5)2+p2) + e−

1
2
(4(x+5)2+p2) + 2e−

1
2
(4x2+p2) cos 10p

)
.
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c) Compare the two Wigner functions. In which case the Wigner function shows

non-classical features the state?

Answer: The two Wigner functions differ by an oscillating term:

W12(x, p) = W1+2(x, p) + CCinte
− 1

2
(4x2+p2) cos 10p

This term makes a crucial difference. Whereas W1+2 is always positive being a

convex combination of two positive Gaussian functions, the cross term may have

negative values. The constants C and Cint are the same for all three terms in

W12(x, p). The exponential functions in these terms are almost the same with the

only difference in the shift of the argument along x-axis. Therefore, the maximum

of the amplitude of the oscillating term is equal to the sum of the maxima of two

others. As the terms are shifted differently along x-axis the whole expression for

W1+2 may then take negative values. This illustrates non-classical correlations

which exist in the superposition of two “classical” Gaussian states and which are

absent in the mixture.

Why the Wigner function is called quasi probability distribution?

Answer: While the integrals of the Wigner function taken over one of its two

variables results in the correct probability distribution of the another one, the

Wigner function itself is not a proper probability distribution, because

1) The Wigner function may take negative values;

2) Even the Wigner function of a particular state is positive everywhere as for

the Gaussian states, if one considered it as a probability distribution for

both x and p, he could calculate the “probability” for x and p to be in the

intervals, which violate the Heisenberg uncertainty relation. The value of such

a“probability” calculated with the Wigner function has no physical meaning.

3. Coherent state is an eigenstate of the annihilation operator. Use here ~ = 1.

â|α〉 = α|α〉, where â = (x̂+ ip̂)/
√

2.

Its complex eigenvalue α is related to the phase space variables x et p as

x =
√

2 Re(α),

p =
√

2 Im(α).

Note that operators â, â†, x̂, p̂ do not commute and therefore the eigenstates of any of

them are not the eigenstates for the others.

a) Find the average value of the number of particles in the coherent state.

Solution: The number operator is N̂ = â†â. By definition of the coherent state

we have

â|α〉 = α|α〉 ⇒ 〈α|â† = 〈α|α∗,
Then

〈N̂〉α = 〈α|N̂ |α〉 = 〈α|â†â|α〉 = 〈α|α∗α|α〉 = |α|2〈α|α〉 = |α|2.
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b) Find the representation of the coherent state in the eigenbasis of the number

operator. What gives this representation for the coherent state with α = 0?

Solution: The representation of the coherent state in the eigenbasis of the number

operator is formally written as

|α〉 =
∞∑
n=0

|n〉〈n|α〉,

where vectors |n〉 are solutions of the eigenvalue equation N̂ |n〉 = n|n〉 and we

know that they can be obtained as

|n〉 =
(â†)n√
n!
|0〉

Then the overlap of the coherent state with the number state can be written as

〈n|α〉 =
1√
n!
〈0|ân|α〉 =

αn√
n!
〈0|α〉.

The overlap in the right hand side can be found using normalization condition for

the coherent state.

1 = 〈α|α〉 =
∞∑
n=0

〈α|n〉〈nα〉 =
∞∑
n=0

|αn|2

n!
|〈0|α〉|2,

which leads to

〈0|α〉 =

(
∞∑
n=0

|αn|2

n!

)−1/2
= e−

|α|2
2 .

The choice of the phase of the square root corresponds to the choice of the global

phase of |α〉.
Finally, we have

|α〉 = e−
|α|2
2

∞∑
n=0

αm√
n!
|n〉,

and therefore, |α = 0〉 = |n = 0〉 = |0〉 is the vacuum state. This is consistent

with the fact that the coherent state with α = 0 contains zero particles (see 3 a).

c) Find up to a constant the wave function of the coherent state in x-representation

ϕα(x) = 〈x|α〉 using the representation of the annihilation operator in terms of

position and momentum as given above. Remember that in the position repre-

sentation we have

x̂ =

∫ ∞
−∞

x|x〉〈x| dx

p̂ = −i
∫ ∞
−∞

d

dx
|x〉〈x| dx.
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Solution:

â|α〉 = α|α〉
â = 1√

2
(x̂+ ip̂)

}
⇒ (x̂+ ip̂)|α〉 =

√
2α|α〉

In the position representation we have∫ ∞
−∞

dx′ |x′〉
(
x+ i

(
−i d
dx′

))
〈x′|α〉 =

√
2α|α〉

Projecting this equation on arbitrary 〈x| we obtain∫ ∞
−∞

dx′ 〈x|x′〉︸ ︷︷ ︸
δ(x−x′)

(
x+ i

(
−i d
dx′

))
〈x′|α〉︸ ︷︷ ︸
ϕα(x′)

=
√

2α 〈x|α〉︸ ︷︷ ︸
ϕα(x)

So that we arrive at the differential equation(
x+

d

dx

)
ϕα(x) =

√
2αϕα(x),

where we dropped index α in function ϕα(x). Let us look for solution in the form

ϕα(x) = Cef(x), where C is the normalization constant and f(x) is an unknown

function. Then we have

xCef(x) + f ′(x)Cef(x) =
√

2αCef(x)

⇒ x+ f ′(x) =
√

2α

⇔ d

dx
f(x) =

√
2α− x

⇔ df(x) = (
√

2α− x)dx

⇒ f(x) = −1

2
(x−

√
2α)2

Therefore ϕα(x) = Ce−
1
2
(x−
√
2α)2 where α is a complex constant.

d) What is the shape of the Wigner function of the coherent state in the phase space?

Solution: The results of our calculations in question 2 a) cannot be used straight-

forwardly because coherent states have complex wave functions.

For ~ = 1 we have

Wα(x, p) =
1

2π

∫ ∞
−∞

eipy〈x− y/2|α〉〈α|x+ y/2〉 dy.

=
1

2π

∫ ∞
−∞

eipyϕα(x− y/2)ϕ∗α(x+ y/2) dy

=
1

2π

1√
π
e−p

2
0

∫ ∞
−∞

eipye−
1
2
(x−x0−ip0−y/2)2e−

1
2
(x−x0+ip0+y/2)2 dy

=
1

2π
√
π
e−p

2
0

∫ ∞
−∞

e−((x−x0)
2+(ip0+y/2)2−ipy) dy

=
1

2π
√
π
e−p

2
0e−(x−x0)

2

∫ ∞
−∞

e−(y
′2−2ip(y′−ip0)+(ip)2−(ip)2) 2dy′, y′ = ip0 + y/2
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=
1

π
√
π
e−p

2
0e−(x−x0)

2

∫ ∞
−∞

e−(y
′−ip)2−p2+2pp0 dy′

=
1

π
√
π
e−(x−x0)

2

e−p
2+2pp0−p20

√
π =

1

π
e−(x−x0)

2−(p−p0)2 .

The Wigner function has a Gaussian centered at (x0, p0) and

〈x̂〉α = x0, 〈p̂〉α = p0.

Using the Wigner function (as in 1 a) one can also verify that coherent states

saturate the Heisenberg uncertainty relation (for ~ = 1)

∆x∆p ≥ 1

2
~,

where

∆x =
√
〈(x̂− 〈x̂〉α)2〉α , ∆p =

√
〈(p̂− 〈p̂〉α)2〉α.
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