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Quantum Mechanics II

Exercise 3: Systems of identical particles
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1. Permutation operator P̂21 for a system of two particles.

(a) Show that this operator possesses two eigenvalues ±1. What are the properties

of corresponding eigenvectors?

(b) Consider two operators Ŝ± = (1± P21)/2 called respectively symmetrizer / anti-

symmetrizer. Show that they are :

• hermitian,

• projectors,

• they project on the orthogonal subspaces.

(c) Show that P̂21Ŝ± = S±P̂21 = ±S± and Ŝ+ + Ŝ− = 1. How can we interpret these

results?

(d) Using the property proven in 1.c) show that S±|ψ〉 is an eigenstate of P̂21 with

eigenvalue ±1.

2. Generalization to N particles.

Let permutation operator P̂ corresponds to a particular permutation P of N parti-

cles and p be the parity of permutation P . Consider operators Ŝ± = 1
N !

∑
P (±1)pP̂

respectively called symmetrizer / antisymmetrizer (here the summation is taken over

all possible permutations P of N particles). Show that P̂ Ŝ± = Ŝ±P̂ = (±1)pŜ± and

deduce the following facts:

(a) Ŝ± are projectors,

(b) Ŝ+ et Ŝ− project on the orthogonal subspaces,

(c) Ŝ±|ψ〉 is an eigenstate of P with eigenvalue ±1 confirming that the eigenstates of

P are completely symmetric or anitisymmetric.

3. Identical particles crossing a beamsplitter.

If we consider a particle prepared at the initial moment t0 as a wave packet ψ(~r, t0) =

φ1(~r) arriving at a beamsplitter 50%−50% as shown in Figure 1 then, in the following

moment t1, when the wave packet already crossed the beamsplitter, the state of the

particle can be written as ψ(~r, t1) = 1√
2

(φ3(~r) + φ4(~r)). Here φ3 and φ4 denote nor-

malized outgoing wave packets propagating in one or another direction. We can use

an approximation 〈φ3|φ4〉 ≈ 0.
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Figure 1: Configuration of incoming and outgoing waves for a beamsplitter.

(a) If we prepare a particle in the state ψ(~r, t0) = φ2(~r), coming from the direction

which is symmetric to φ1(~r) with respect to the beamsplitter, the state of the

particle at the moment t1 can be written as an unknown superposition

ψ(~r, t1) = αφ3(~r) + βφ4(~r).

Determine (up to a global phase) the coefficients α et β taking into account

that crossing the beamsplitter corresponds to a Hamiltonian evolution. Take an

example of φ2(x) which satisfies 〈φ2|φ1〉 = 0.

(b) Prepare at the initial moment t0 two fermions with the same state of spin, one

in the state φ1(~r), and another in the state φ2(~r). What is the final state of the

system? Is it possible to detect both fermions in the same output direction?

(c) Take the conditions of the previous question and apply them to two bosons, also

initially prepared in the same state of spin, one boson being initially in the state

φ1(~r), and another in the state φ2(~r). Show that the two bosons always exit at

the same output 1.

4. Bose-Einstein Condensate (BEC) in a harmonic trap.

Consider N bosons of spin zero in an isotropic harmonic trap of angular frequency ω.

The interactions between particles are neglected and the mean number of particles at

the energy level E is given by The Bose-Einstein law

nE =
1

e(E−µ)/kbT − 1
,

where µ is chemical potential and T is temperature.

Show that:

(a) The chemical potential satisfies µ < 3
2
h̄ω.

1This experiment has been realized with photons by C.K. Hong et al, Phys. Rev. Lett. 59 (1987) 2044.



(b) The number of particles N outside the fundamental level of the trap satisfies

N ≤ F (ξ) =
∞∑
n=1

(n+ 1)(n+ 2)

2(enξ − 1)
, ξ =

h̄ω

kbT
.

Clue: The dgeneracy of the energy level En = (n+ 3
2
)h̄ω is gn = 1

2
(n+ 1)(n+ 2).

(c) In the limit kbT � h̄ω the discrete somme in the definition of F (ξ) can be replaced

by par an integral. Show that the number of particles outside the fundamental

level is majorised by

N ′max = ζ(3)

(
kbT

h̄ω

)3

,

where the Rieman ζ(n) fonction has the value ζ(3) ≈ 1, 202.

Clue: ∫ ∞
0

xα−1

ex − 1
dx = Γ(α)ζ(α)

(d) What happens if we place in the trap more than N ′max particles? At which tem-

perature this phenomenon can be observed in a trap of frequency ω
2π

= 100 Hz

containing 106 atoms?

5. Fermi gas : non-interacting fermions at low (zero) temperature.

- “non-interacting” particles - the energy of the particles is only kinetic.

- “low temperature” - the particles occupy the lowest possible energy levels.

Consider N non-interacting fermions of spin s at low temperature confined in a three-

dimensional (cubic) box with the edge length L:

(a) Find the relation between the density of the Fermi gas ρ and the Fermi momem-

tum pF asuming that the number of fermions N is large. Use the momentum

quantization of a free particle in a box with the momentum eigenvalues ~p = 2πh̄
L
~n,

where ~n = (n1, n2, n3) and all ni 6= 0 integer. Take into account the maximal

number of fermions of spin s which can occupy the same energy level.

Reminder: Fermi momentum is the maximal absolute value of the momentum of

a fermionic particle in the Femi gas.

(b) Express the average energy of the fermions in terms of the Fermi energy εF
corresponding to Fermi momentum.

(c) Express the Fermi energy as a function of the density of fermions and deduce an

expresion of the Fermi energy for electrons.

NB: The Fermi energy of electrons can attain large values (εF = 3eV in sodium

metal) which is much higher than the kinetic energy of the thermal motion at

room temperature (kBT ≈ 0, 025 eV). That is why the “zero temperature” ap-

proximation is applicable for the conduction electrons in metals even at room

temperature.



Note. Applications of the Fermi gas model:

• conduction electrons in a metal

• semi-conductors

• electronic degenerate gas in white dwarfs

• electronic degenerate gas in neutron stars


