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1. Permutation operator P̂21 for a system of two particles.

(a) Show that this operator possesses two eigenvalues ±1. What are the properties

of corresponding eigenvectors?

Solution: From the the definition of P̂21 we have

P̂21P̂21|ψ12〉 = P̂21|ψ21〉 = |ψ12〉, ⇒ P̂21P̂21 = I.

Let |ψ12〉 be an eigenstate of P̂21 with eigenvalue λ

P̂21P̂21|ψ12〉 = P̂21λ|ψ12〉 = λ2|ψ12〉, ⇒ λ2 = 1, ⇒ λ = ±1.

The eigenvectors corresponding to λ = 1 are symmetric.

The eigenvectors corresponding to λ = −1 are antisymmetric.

(b) Consider two operators Ŝ± = (1± P̂21)/2 called respectively symmetrizer / anti-

symmetrizer. Show that they are :

• hermitian,

Solution: From 1 a) it follows that the eigenvalues of Ŝ± are real,

hence Ŝ± are hermitian �

• projectors,

Solution: From the definition of Ŝ± we have

Ŝ±Ŝ± =
1

4
(I± P̂21)(I± P̂21) =

1

4
(I± P̂21 ± P̂21 + P̂ 2

21)︸︷︷︸
=I

=
1

4
(2I± 2P̂21) =

1

2
(I± P̂21) = Ŝ±�

• they project on the orthogonal subspaces.

Solution:

〈ψ12|Ŝ†−Ŝ+|ψ12〉 =
1

4
〈ψ12|(I− P̂21)(I + P̂21)|ψ12〉

=
1

4
〈ψ12|(I + P̂21 − P̂21 − P̂ 2

21)︸︷︷︸
=I

|ψ12〉 =
1

4
〈ψ12|0|ψ12〉 = 0�



(c) Show that P̂21Ŝ± = Ŝ±P̂21 = ±Ŝ± and Ŝ+ + Ŝ− = I. How can we interpret these

results?

Solution: From the definition of Ŝ± we have immediately

P̂21Ŝ± =
1

2
P̂21(I± P̂21) =

1

2
(P̂21 ± P̂21P̂21) =

1

2
(I± P̂21)P̂21 = Ŝ±P̂21 ,

then

Ŝ±P̂21 =
1

2
(I± P̂21)P̂21 =

1

2
(P̂21 ± P̂21P̂21) =

1

2
(P̂21 ± I) = ±1

2
(I± P̂21) = ±Ŝ± ,

and finally

Ŝ+ + Ŝ− =
1

2
(I + P̂21) +

1

2
(I− P̂21) = I

(d) Using the property proven in 1 c) show that Ŝ±|ψ〉 is an eigenstate of P̂21 with

eigenvalue ±1.

Solution: From 1 c) we have immediately

P̂21Ŝ±|ψ12〉 = ±Ŝ±|ψ12〉�

2. Generalization to N particles.

Let permutation operator P̂ corresponds to a particular permutation P of N parti-

cles and p be the parity of permutation P . Consider operators Ŝ± = 1
N !

∑
P (±1)pP̂

respectively called symmetrizer / antisymmetrizer (here the summation is taken over

all possible permutations P of N particles). Show that P̂ Ŝ± = Ŝ±P̂ = (±1)pŜ±

Solution:

P̂ Ŝ± = P̂

(
1

N !

∑
P ′

(±1)p
′
P̂ ′

)
=

1

N !

∑
P ′

(±1)p
′
P̂ P̂ ′.

Let us note that P̂ P̂ ′ = P̂ ′′ is a permutation operator which corresponds to new

permutation P ′′ and parity p′′ = p+ p′. Then using new notations we have

P̂ Ŝ± =
1

N !

∑
P ′

(±1)p
′′−pP̂ ′′.

Note that the sum
∑

P ′ is taken over all permutations and therefore is the same as∑
P ′′ which also is taken over all permutations. Then

P̂ Ŝ± = (±1)−p
1

N !

∑
P ′′

(±1)p
′′
P̂ ′′.

Taking into account that p takes only the values (0, 1) we have (±1)−p = (±1)p, then

P̂ Ŝ± = (±1)p
1

N !

∑
P ′′

(±1)p
′′
P̂ ′′ = (±1)pŜ±�

and deduce the following facts:



(a) Ŝ± are projectors,

Solution: Let us check the defining property of projector operator.

Ŝ±Ŝ± =

(
1

N !

∑
P

(±1)pP̂

)
Ŝ± =

1

N !

∑
P

(±1)pP̂ Ŝ±

=
1

N !

∑
P

(±1)p(±1)pŜ± =
1

N !

∑
P

Ŝ± = Ŝ±�

(b) Ŝ+ et Ŝ− project on the orthogonal subspaces,

Solution: The number of all permutations of N elements is N ! = 1 · 2 · (3 · . . . ·N)

is even number, therefore the numbers of even and odd permutations are equal :

Ŝ−Ŝ+ = Ŝ−

(
1

N !

∑
P

(+1)pP̂

)
=

1

N !

∑
P

Ŝ−P̂

=
1

N !

∑
P

(−1)pŜ− =
1

N !
Ŝ±

∑
P+

−
∑
P−


=

1

N !
Ŝ±

(
N !

2
− N !

2

)
= 0�

(c) Ŝ±|ψ〉 is an eigenstate of P with eigenvalue ±1 confirming that the eigenstates of

P are completely symmetric or anitisymmetric.

Solution: We have:

PS±|ψ〉 = (±1)pS±|ψ〉�

3. Identical particles crossing a beamsplitter.
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Figure 1: Configuration of incoming and outgoing waves for a beamsplitter.

If we consider a particle prepared at the initial moment of time t0 as a wave packet

ψ(~r, t0) = φ1(~r) arriving at a balanced beamsplitter as shown in Figure 1 then, when

the wave packet already crossed the beamsplitter, at time t1, the state of the particle

can be written as ψ1(~r, t1) = 1√
2

(φ3(~r) + φ4(~r)). Here φ3 and φ4 denote normalized

outgoing wave packets propagating in one or another direction so that their overlap

can be neglected: 〈φ3|φ4〉 ≈ 0.



(a) If we prepare a particle in the state ψ(~r, t0) = φ2(~r), coming from the direction

which is symmetric to φ1(~r) with respect to the beamsplitter, the state of the

particle at the moment t1 can be written as an unknown superposition

ψ2(~r, t1) = αφ3(~r) + βφ4(~r).

Determine (up to a global phase) the coefficients α et β taking into account

that crossing the beamsplitter corresponds to a Hamiltonian evolution. Take an

example of φ2(x) which satisfies 〈φ2|φ1〉 = 0.

Solution: For the balanced beam splitter the transmission and reflection coeffi-

cients are equal and the inputs 1 and 2 are symmetric therefore the absolute

values of the amplitudes at the output should be the same |α|2 = |β|2 = 1/
√

2.

Then denoting β − α = ϕ we have up to a global phase

ψ2(~r, t1) =
1√
2

(
φ3(~r) + eiϕφ4(~r)

)
.

The hamiltonian evolution is unitary, therefore it preserves orthogonality of initial

states:

|ψ1,2(~r, t1〉) = U(t1)|φ1,2〉 ⇒ 〈ψ1(~r, t1)|ψ2(~r, t1)〉 = 〈φ1|U †(t1)U(t1)|φ2〉 = 〈φ1|φ2〉 ≈ 0.

This implies

〈φ1|U †(t1)U(t1)|φ2〉 = 0 ⇔ 1

2
(〈φ3|+ 〈φ4|)

(
|φ3〉+ eiϕ|φ4〉

)
= 0

⇔ 1 + eiϕ = 0⇔ eiϕ = −1

⇔ ϕ = π .

The we have finally

ψ2(~r, t1) =
1√
2

(φ3(~r)− φ4(~r)) .

(b) Prepare at the initial moment t0 two fermions with the same state of spin, one

in the state φ1(~r), and another in the state φ2(~r). What is the final state of the

system? Is it possible to detect both fermions in the same output direction?

Solution: The wave function of fermions is antisymmetric

|ψ(~r, t0)〉fermion =
1√
2

(|φ1〉|φ2〉 − |φ2〉|φ1〉)

Knowing the evolution of input state going through the beam splitter we have at

the output

|ψ(~r, t1)〉fermion =
1√
2

[
1√
2

(|φ3〉+ |φ4〉)
1√
2

(|φ3〉 − |φ4〉)

− 1√
2

(|φ3〉 − |φ4〉)
1√
2

(|φ3〉+ |φ4〉)
]

=
1√
2

[|φ4〉|φ3〉 − |φ3〉|φ4〉]



The output state is a superposition of states corresponding to the fermions exiting

from the beamsplitter in different output directions.

(c) Take the conditions of the previous question and apply them to two bosons, also

initially prepared in the same state of spin, one boson being initially in the state

φ1(~r), and another in the state φ2(~r). Show that the two bosons always exit at

the same output 1.

Solution: The wave function of bosons is symmetric

|ψ(~r, t0)〉boson =
1√
2

(|φ1〉|φ2〉+ |φ2〉|φ1〉)

Knowing the evolution of input state going through the beam splitter we have at

the output

|ψ(~r, t1)〉boson =
1√
2

[
1√
2

(|φ3〉+ |φ4〉)
1√
2

(|φ3〉 − |φ4〉)

+
1√
2

(|φ3〉 − |φ4〉)
1√
2

(|φ3〉+ |φ4〉)
]

=
1√
2

[|φ3〉|φ3〉+ |φ4〉|φ4〉]

The output state is a superposition of states corresponding to both bosons exiting

together from the beamsplitter in one or another output directions.

4. Bose-Einstein Condensate (BEC) in a harmonic trap.

Consider N bosons of spin zero in an isotropic harmonic trap of angular frequency ω.

The interactions between particles are neglected and the mean number of particles at

the energy level E is given by the Bose-Einstein law

nE =
1

e(E−µ)/kbT − 1
,

where µ is chemical potential and T is temperature.

Show that:

(a) The chemical potential satisfies µ < 3
2
~ω.

Solution: The number of partticles is a non negative number, therefore, from the

definition of nE we have

nE ≥ 0⇔ e(E−µ)/kbT − 1 ≥ 0⇔ (E − µ)/kbT ≥ 0⇔ E ≥ µ.

The energy levels, which for bosons in the three dimensional trap are

En =

(
n+

3

2

)
~ω.

The last inequality should hold for all levels therefore,

En ≥ E0 =
3

2
~ ≥ µ�

1This experiment has been realized with photons by C.K. Hong et al, Phys. Rev. Lett. 59 (1987) 2044.



(b) The number of particles N outside the fundamental level of the trap satisfies

N ≤ F (ξ) =
∞∑
n=1

(n+ 1)(n+ 2)

2(enξ − 1)
, ξ =

~ω
kbT

.

Reminder: The degeneracy of the energy level En = (n+ 3
2
)~ω is

gn = 1
2
(n+ 1)(n+ 2).

Solution: The number of particles N outside the fundamental level in the trap is

given by the sum over all other energy levels

N ′ =
∞∑
n=1

gnnEn =
1

2

∞∑
n=1

(n+ 1)(n+ 2)(e(En−µ) − 1)−1

where gn and nEn are degeneracy and the mean number of particles at level n.

Starting from the inequality on µ proven in 4 a) we obtain

−µ ≥ −3

2
~ ⇔ En − µ ≥ En −

3

2
~ω = n~ω

⇔ e(En−µ)/kBT ≥ en~ω/kBT

⇔
(
e(En−µ)/kBT − 1

)−1 ≤ (enξ − 1
)−1

, ξ =
~ω
kBT

.

Using the last inequality in the expression for N ′ we have:

N ′ =
1

2

∞∑
n=1

(n+ 1)(n+ 2)(e(En−µ) − 1)−1 ≤
∞∑
n=1

(n+ 1)(n+ 2)

2(enξ − 1)
= F (ξ)�

(c) In the limit kBT � ~ω the discrete sum in the definition of F (ξ) can be replaced

by an integral. Show that the number of particles outside the fundamental level

is majorized by

N ′max = ζ(3)

(
kbT

~ω

)3

,

where the Rieman ζ(n) fonction.

Reminder:∫ ∞
0

xα−1

ex − 1
dx = Γ(α)ζ(α), Γ(3) = 2!, ζ(3) ≈ 1.202.

Solution: In the limit kBT � ~ω, variable x = ~ω
kBT

n = ξn changes almost contin-

uously with n and therefore the sum in the definition of F (ξ) can be replaced by

the integral

F (ξ) =

∫ ∞
0

(
x
ξ

+ 1
)(

x
ξ

+ 2
)

2(ex − 1)

dx

ξ
=

1

2ξ

∫ ∞
0

(
x2

ξ2
+ 3x

ξ
+ 2
)

ex − 1
dx.



Note that in the limit kBT � ~ω we have ξ � 1 and therefore

1

ξ2
� 1

ξ
� 1.

Keeping only the highest order term we obtain

F (ξ) ≈ 1

2ξ3

∫ ∞
0

x2

ex − 1
dx =

1

2ξ3
Γ(3)ζ(3)

Then using Γ(3) = 2! = 2 we come to

F (ξ) ≈ ζ(3)

(
kBT

~ω

)3

,

which gives us

N ′max = ζ(3)

(
kBT

~ω

)3

(d) What happens if we place in the trap more than N ′max particles? At which tem-

perature this phenomenon can be observed in a trap of frequency ω
2π

= 100 Hz

containing 106 atoms?

Solution: If more than N ′ atoms are in the trap the excess number of bosons will be

at the fundamental level. This phenomenon is called Bose-Einstein condensation.

By inverting the result of 4 c) we obtain the temperature of such transition:

T =

(
N ′

ζ(3)

)1/3 ~ω
kB
' 4, 52 · 10−7K,

taking into account the following numbers
N ′max = 106

ζ(3) ≈ 1.202

~ω = hν = 6, 63 · 10−34 · 100[J · s · Hz]

kB = 1.38 · 10−23[J ·K−1].

The relation shows us that by decreasing the temperature we decrease the number

of bosons which can be outside the fundamental level. Even if initially we had

N < N ′ by decreasing temperature we can decrease N ′ such that N > N ′, and

therefore, N −N ′ bosons will necessarily occupy the fundamental level (go to the

BE condensate).

5. Fermi gas : non-interacting fermions at low (zero) temperature.

- “non-interacting” particles - the energy of the particles is only kinetic.

- “low temperature” - the particles occupy the lowest possible energy levels.

Consider N non-interacting fermions of spin s at low temperature confined in a three-

dimensional (cubic) box with the edge length L:



(a) Find the relation between the density of the Fermi gas ρ and the Fermi momem-

tum pF asuming that the number of fermions N is large. Use the momentum

quantization of a free particle in a box with the momentum eigenvalues ~p = 2π~
L
~n,

where ~n = (n1, n2, n3) and all ni 6= 0 integer. Take into account the maximal

number of fermions of spin s which can occupy the same energy level.

Reminder: Fermi momentum is the maximal absolute value of the momentum of

a fermionic particle in the Femi gas.

Solution: The total hamiltonian of N independent fermions is a sum of N in-

dividual hamiltonians of single fermion in a box (in our case), because there is

no interaction. The eigenstates of each individual hamiltonian are plane waves

φp(r) = eipr/L3, to which is associated one of 2s+ 1 spin states corresponding to

a particular projection ms~ (ms = −s,−s+1, . . . , s) of spin on a chosen axis. The

three-dimensional momentum is given by p = (2π~/L)n, where n = (n1, n2, n3)

is a three-dimensional vector of integers (positive or negative). The fundamental

level of the total system is achieved when the particles fill in all possible states

with lowest energies and therefore momenta. Then the absolute values of all mo-

menta are bounded by Fermi momentum |p| < pF . The sum of the filled states

is equal to N .

N =
∑

p(|p|<pF )

(2s+ 1).

For large N the sum may be replaced by integral over the sphere of radius pF :

N ' (2s+ 1)
L3

(2π~)3

∫
|p|<pF

d3p = (2s+ 1)
L3

(2π~)3
4

3
πp3F =

2s+ 1

6π2

(
LpF
~

)3

.

The the gas density ρ = N/L3 is related to PF as

ρ =
2s+ 1

6π2

(pF
~

)3
.

(b) Express the average energy of the fermions in terms of the Fermi energy εF
corresponding to Fermi momentum pF .

Solution: The energy of non-interacting particles is only kinetic. For particles

with mass m we have:

〈E〉 =
〈|p|2〉
2m

=
1

N

∑
p(|p|<pF )

(2s+ 1)
|p|2

2m
' 2s+ 1

N

(
L

2π~

)3 ∫
|p|<pF

|p|2

2m
d3p.

Hence

〈E〉 =
〈|p|2〉
2m

=
3

5

p2F
2m

=
3

5
εF

where εF = p2F/2me

(c) Express the Fermi energy as a function of the density of fermions and deduce an

expression of the Fermi energy for electrons.



NB: The Fermi energy of electrons can attain large values (εF = 3eV in sodium

metal) which is much higher than the kinetic energy of the thermal motion at

room temperature (kBT ≈ 0, 025 eV). That is why the “zero temperature” ap-

proximation is applicable for the conduction electrons in metals even at room

temperature.

Solution: Using the relation between the density of particles and the Fermi mo-

mentum we have for electrons (s = 1/2):

ρe =
1

3π2

(pF
~

)3
=

1

3π2~3
(2mεF )3/2,

and finally

εF =
~2 (3ρeπ

2)
3/2

2me

.

Note. Applications of the Fermi gas model:

• conduction electrons in a metal

• semi-conductors

• electronic degenerate gas in white dwarfs

• electronic degenerate gas in neutron stars


